APPLICATIONS OF THE GENERALIZED EVALUATION SUBGROUPS ON CONVERSES OF THE LEFSCHETZ FIXED POINT THEOREM

MOO HA WOO

1. Introduction.
Let X be a compact connected polyhedron and let $f : X \to X$ be a self map of X. Let $MF(f)$ stand for the least number of fixed points of self maps homotopic to f, $N(f)$ the Nielsen number of f, and $L(f)$ the Lefschetz number of f. We always have $N(f) \leq MF(f)$.

The celebrated Lefschetz fixed point theorem says that $L(f) \neq 0$ implies that every map homotopic to f has a fixed point, i.e., $MF(f) > 0$. Its converse statement, "$L(f) = 0$ implies $MF(f) = 0$" is not always true even for homeomorphisms of closed manifolds, as shown by example in [Mc]. It is desirable to understand under what restrictions on the space or the self map the converse does hold true.

In [J1, J2], Jiang showed the following theorem as a converse of the Lefschetz fixed point theorem:

THEOREM. Let X be a compact connected polyhedron without global separating points. Suppose X satisfies the condition $\pi_1(X, x_0) = G(X, x_0) (= J(X))$. Then the Lefschetz number $L(f) = 0$ iff f is homotopic to a fixed point free map.

THEOREM. Let X be a compact connected polyhedron without global separating points. Suppose $\pi_1(X, x_0)$ is finite and the universal covering space \tilde{X} has the same rational homology as X. Then for any $f : X \to X$, $L(f) = 0$ iff f is homotopic to a fixed point free map.

It is also desirable to understand under what restrictions on the space which does not satisfy $\pi_1(X, x_0) = G(X, x_0)$ the converse does hold true.

Received June 20, 1989.
Research supported by Korea Science and Engineering Foundation.
The purpose of this paper is to give a partial solution of the above question using the generalized evaluation subgroups of the fundamental group.

2. Notation and terminology.

Let X be a topological space with x_0 as a base point. A homotopy $H : X \times I \to X$ is called a cyclic homotopy [Go] if

\[H(x, 0) = H(x, 1) = x. \]

In another notation, h_t is a cyclic homotopy if $h_0 = h_1 = 1_X$, where 1_X denotes the identity map of X. If h_t is a cyclic homotopy, the path given by $\alpha : I \to X$ such that $\alpha(t) = h_t(x_0)$ is called the trace of h_t.

The set of homotopy classes of those loops which are the trace of some cyclic homotopy form a subgroup $G(X, x_0)$ of the fundamental group which is called the evaluation subgroup [Go].

In [WK], the author and Kim defined the generalized evaluation subgroup $G(X, A, x_0)$ of the fundamental group as follows; Let (X, A) be a topological pair and $i : A \to X$ be the inclusion. Consider the class of continuous functions $H : A \times I \to X$ such that

\[H(x_0, 0) = H(x_0, 1) = i(x). \]

Then the map $h : I \to X$ defined by $h(s) = H(x_0, s)$ represents an element $[h]$ in $\pi_1(X, x_0)$. The set of all elements $[h] \in \pi_1(X, x_0)$ obtained in the above manner from some H is denoted by $G(X, A, x_0)$. Thus for every $[h] \in G(X, A, x_0)$, there is at least one map $H : A \times I \to X$ such that $[H(x_0, _)] = [h]$. H is called an affiliated map to $[h]$ with respect to A.

Let A be locally compact and regular, and X^A be the space of mappings from A to X with compact open topology. The map $p : X^A \to X$ given by $p(g) = g(x_0)$ is continuous. Thus p induces a homomorphism

\[p_* : \pi_1(X^A, i) \to \pi_1(X, x_0). \]

In this case, the image of p_* is $G(X, A, x_0)$. Thus $G(X, A, x_0)$ is called the generalized evaluation subgroup of the fundamental group $\pi_1(X, x_0)$.
It is easy to show that \(J(X) = G(X) \) is a subgroup of \(G(X, A) \).

3. Main results:

In the following theorem, we substitute the generalized evaluation subgroup for the evaluation subgroup in the converses of the Lefschetz fixed point theorem.

Theorem 1. Let \(X \) be a compact connected polyhedron without global separating points. Suppose there exists a compact connected subpolyhedron \(A \) of \(X \) such that \(A \) satisfies \(\pi_1(X, x_0) = G(X, A, x_0) \) and also satisfies either of the following:

1. if \(X \) has no local separating points, \(G(X, A, x_0) \) is abelian, or
2. if \(X \) has a local separating point, \(A \) has a deformation retract homeomorphic to \(S^1 \).

Then for any map \(f : X \to X \) such that \(f(X) \subset A \), \(L(f) = 0 \) iff \(f \) is homotopic to a fixed point free map.

Proof. Case 1. If \(X \) has no local separating points, then \(\pi_1(X, x_0) \) is an abelian group by the hypothesis. For any map \(f : X \to X \) such that \(f(X) \subset A \), we have

\[
\pi_1(X, x_0) = G(X, A, x_0) \subset G(X, f(X), x_0).
\]

Thus \(G(X, f(X), x_0) = \pi_1(X, x_0) \). Let \([h]\) be any element of \(G(X, f(X), x_0) \). Then there exists a homotopy \(H : f(X) \times I \to X \) such that

\[
H(,0) = i = H(,1) \quad \text{and} \quad H[x_0,] = [h].
\]

Since \(x_0 \in f(X) \), there exists an element \(z \in X \) such that \(f(z) = x_0 \). Define a homotopy \(K : X \times I \to X \) by \(K = H(f x 1) \).

Then \(K \) is a continuous function and

\[
K(x, 0) = H(f(x), 0) = i f(x) = f(x),
K(x, 1) = H(f(x), 1) = i f(x) = f(x),
K(z, t) = H(f(z), t) = H(x_0, t) = h(t).
\]

Thus we have \([h]\) \(J(f, z) \). This means that \(f_*(\pi_1(X, z)) \subset J(f, z) \).

By Theorem 2.4.2 \(J_2 \), we obtain that \(L(f) = 0 \) implies \(N(f) = 0 \).
Since \(\pi_1(X, x_0) \) is an abelian group, \(X \) is not a surface of negative Euler characteristic. Therefore, \(X \) is a compact connected polyhedron and not a surface of negative Euler characteristic. If we use Theorem 1.6.3 \([J_2]\), we have \(MF(f) = N(f) \). By these two results, we have that \(L(f) = 0 \) implies \(MF(f) = 0 \). The converse is clear.

Case 2. Let \(X \) be a compact connected polyhedron with a local separating point which is not a global separating point. Since \(X \) has a compact connected subspace \(A \) which has a deformation retract homeomorphic to \(S^1 \), we have the inclusion \(i : S^1 \to A \) and the deformation retraction \(r : A \to S^1 \). Let \(f : X \to X \) be a self map such that \(f(X) \subset A \) and \(f_A : A \to A \) be its restriction. Consider

\[
g = r \circ f_A \circ i : S^1 \to S^1
\]

then \(g \) and \(f_A \) are of the same homotopy type. By homotopy type invariance of the Nielsen number (Theorem 1.5.3 \([J_2]\)), we have \(N(g) = N(f_A) \). For \(S^1 \), we know that \(g \) can be homotoped to a map \(k \) with exactly \(N(g) \) fixed points. Thus, on \(A \), the map \(f_A \) (homotopic to \(i \circ g \circ r \)) can be homotoped to \(i \circ k \circ r \) with exactly \(N(g) \) fixed points. We denote this homotopy by \(G \). Consider that \(A \) is an ANR and \(H' : (X \times 0) \cup (A \times I) \to A \) such that \(H'_{X \times 0} = f, H'_{A \times I} = G \), there exists a homotopy \(H : X \times I \to A \) such that \(H = H' \) on \((X \times 0) \cup (A \times I) \). Let \(f' = i \circ H(, 1) : X \to X \). Then \(f'(X) \subset A \) and \(f'_A = i \circ k \circ r \). Since \((X, A) \) is a pair of compact connected polyhedron and \(f : X \to X \) satisfies \(f(X) \subset A \), we have \(N(f_A) = N(f) \) (Corollary 1.5.5 \([J_2]\)).

Now \(f' \) and \(f'_A = i \circ k \circ r \) have the same fixed points. Thus \(f' \) has exactly \(N(f'_A) \) fixed points. Since \(f \) is homotopic to \(f' \), we have \(MF(f) \leq \# \text{Fix}(f') = \# \text{Fix}(k) = N(g) = N(f_A) = N(f) \).

Otherwise, \(N(f) \leq MF(f) \) is clear. Thus we have \(MF(f) = N(f) \). By case 1, we already know that \(L(f) = 0 \) implies \(N(f) = 0 \). Therefore we have that \(L(f) = 0 \) iff \(MF(f) = 0 \).

Theorem 2. Let \(X \) be a compact connected polyhedron without global separating points. Suppose \(\pi_1(X, x_0) \) is finite and \(X \) has a subspace \(A \) such that \(G(X, A, x_0) = \pi_1(X, x_0) \). Then for any map \(f : X \to X \)
Applications of the Generalized Evaluation Subgroups

X such that \(f(X) \subset A \), we have \(L(f) = 0 \) iff \(f \) is homotopic to a fixed point free map.

Proof. Since \(\pi_1(X, x_0) \) is finite, \(X \) can not be a surface of negative Euler characteristic and \(X \) can not have a local separating point which is not a global one (Lemma 2.6.4 [J2]). So, according to Theorem 1.6.3 [J2], we have \(N(f) = MF(f) \) for any \(f : X \to X \). Since \(G(X, A, x_0) = \pi_1(X, x_0) \), we know that \(L(f) = 0 \) implies \(N(f) = 0 \). Thus we obtain the result.

References

Department of Mathematics Education
Korea University
Seoul 136–701, Korea