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1. Introduction

This paper is mainly concerned with the K-theory which is fundamental and crucial
to  the study of index theory. Early in 1960, English Mathematician M.F. Atiyah
formulated K-groups for topological space ([2]), and then the K-groups in algebraic
systems were regulated by H. Bass approximately in 1965. [4]

Thus we have two branches in K-theory, one is algebraic K-theory developed by J.
Milnor ([117) and the other one is geometric K-theory which has been elaborately
established by J.F. Adams, L. Hodgkin and M. Karoubi, etc({1], [6], (8], [13D).

The purpose of this paper is to epitomize some of results which has been obtained in
seminar on K-theory performed during the last two semesters under my academic
advisor. The contents of the paper is as follows.

In Section 2, we outline the formulation of K-groups and then prove some basic
properties (Lemma 2.2 and Lemma 2.3).

In Section 3, we deal with the relative K-groups. The main results are Theorem 3.5
and Theorem 3.6. In Theorem 3.5, we shall prove that for ‘the additive functor
Pp 1 E(X)——&(X) (Fr—E®--EBE(n-times)) if we put K(¢,) =K WX :Z/n) and
KYX,Y; Z/n)=Coker (K'(P :Z/n)—~K YX/Y :Z/n)) then K" Y(X,Y: Z/n)—>
K\YX:Z/n)-~— K WY :Z/n) is exact, where X is compact, Y is a closed subset

of X and P is an one point space. Theorem 3.6 proves that for a Banach algebra A

KYX,Y : A)— K WX : A)— K (Y: A)

is exact.

In Section 4, we study cup-product in K-groups. In particular, we prove in Theorem
4.3 that for locally compact spaces X and ¥ and a n-fold covering T : X——Y, we
have M (NM*(y)-2)=y -+ Ma(x), where x&K(X) and y=K(1).
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2. Preliminaries

Let M be an abelian monoid, and let F(M) be the free abelian group with basis
{{m]ime=M}. We take a subgroup D{M) which is generated by linear combinations
of the form [m+n]-[m]—[#n], and put

S(M)=F(M)/D(M).
Then S(M) is an abelian group with addition
[m]+[n]=[m+n],

which is called the symmetrization of M. It is clear that the inverse of [m]e=S(M)
is ~[m]=[—m], where we have to note that it [m]e=F(M), then [—mIcF(M).
In the product M XM we shall consider two equivalénce relations:
(m,m)y~(m', W) FPEM 2+ m+n'+p=nt+m'+p
and
(m, ny=(m', n )b, qEM D+ (m, 8)+(p, p) =(m/, #') +(4,9)
ie., m+p=m'+qg and n+p=n'+q.

Then we have
SIMYz==MxM/~=MxM/=~,

(Proof) Let [m,n] be the equivalent class of (m,n) in M xM/~. Then [m, m]=0
and [m,n]-+[#n,m]=0. That is, if we put [m,n]=[m]~[n], then [m,n] is the element

Next we shall prove that M X M/~=M xM/a. Let {m,n} be the equivalent class of
(m,n) in M xM/~. Then for all me=M {m,m}={0,0} is the zero point of M xM/=.
Thus we can denote such that {m,n}={m}—{n}, The map 7 defined by

7 M><JM/~~—-——»M>U<JJ\/I/>¢
[m,n] r—{m,n)
is a group homomorphism, because of that if [m,z]=[m’,n’]. then {m,n}={m’,n’}.

(Note that {m,»}+ {#',m’} ={m+n', n+m’'} ={0,0} because that m+n'+ p=n-t+m'+p

by [m,n)=[m’,n’]. That is {m,n)=~—{w',m’} ={m’,n'}). It is clear that 7y is an
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isomorphism, ///

We define the monoid homomorphism s : M—— S(M) by s(m)=[m, 0]=[m]. Then the
symmetrization S(M) satisfies the universal property such that for an abelian group A
and a monoid homomorphism f: M- A there exists a unique group homomorphism

F : S(M)—— A such that the diagram

M —5 5 S(M)

N /.
IN. JEIF
N

is commutative([7], [9]).

Example 2, 1. Let A be a commutative ring with 1, and let #(A4) be the category
consisting of ‘all finitely generated projective A-modules and A-module homomorphis-
ms, Then # (A) is an abelian monoid with direct sum as its addition.

We put K(A)=S(#(A))

(i) If (A, M) is a local ring, then K(A) z=Z(the ring of all integers).

Proof. We prove that any minimal basis of M is a basis of M. Since M/IMM =M & .,k
is a vector space over k=A/M, it suffices to prove that, if x;,...,%.EM are
such that their images %,,...,%, in M /MMM are linearly independent over %, then they
are linearly independent over A, If M is projective, then it is flat, The two following
conditions are equivalent:-.-..-(A)

(1) M is A-flat
@ If a,=A, x.=M (1<i<r) andzr_L; a,x;=0, then there exist an integer s, eleme-
nts &,=A and y,eM (1<j<s) such that % a:b;,=0 for all 7 and x,= 1 b;;y; for all 7,
i 7

Now we use induction on . When s#=1, put ax;=0. Then, by (A) there exist an

integer s, elements 5,;65A and v,e=M (1< j<s) such that ab,,=0 for all j=1,...,s and

Xy= iZl by;y;. Since %0 in M/MM, there exists an element §;,5<M. Assume b, &M,

Then &, is a unit in A and ab;;=0. Hence @==0. Suppose #»>] and 2"1 a;x; =0, Also,
by (A4), there exist an integer s, elements 5,634 and y,&M(1<{j<s) such that

; ab;; =0 for all j=1,...,s and x;:j; by, forall 7=1,...,n Since ¥,7%0 in M/MM
we have b,,&M for at least one 7. Then since 4,, is a unit in A, we have

29 —
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%ol
Ay E}( —bii/bni) .
Therefore, if ¢;=—b,,/b,,,

0= Z_:“ %= A (X +C %) o+ (K H €t

Since ¥;+¢,%, ..., X1+ 1%, are linearly independent over &,

n.1
we have a;=... =a,.;=0 and ancz;‘] cai=0. ///

(ii) If A is a principal ideal domain, then S(#(4)) =K(A4)=Z.

"~ Proof. Since A is a principal ideal domain it is a Dedekind domain (or 4 is a field).
For two ideals @, and O, of A4 if there exist elements a, and @, of A such that a,00,
=a,;, then we say that 0, and ®, belong to the same ideal class. Then, the ideal
classes of A, which is denoted by ¥(A), is an abelian group under multiplication({47,
[113). In particular, the identity of ¥(.4) is the class of principal ideals and K(A4)=
Zpe(A) ([111). In our case, since A is a principal ideal domain ¥(A4):={0}, and
thus K(A)Y=Z. ///

Throughout this paper, by a topological space we mean a Hausdorff topological
space,

Let X be a topological space, and let #,(X) be the category consisting of all
k-vector bundles over X with finite ranks and bundle morphisms, where k=R (reals)
or C {complexes), We shall sometimes put £(X)=¢&,(X). It is easy to prove that
&(X) is an abelian monoid with the Whitney sum of bundles ([5], [97). Moreover,
#(X) is an additive category ([97).

For a topological space X we define
Ki(X)=8(€x(x)),

and we call K,(X) the rea!/ (when £4=R) (complex when k=C) K-group over X.
Let us put

T, =the category consisting of topological spaces and continuous

maps between topological spaces
and

Ay=the category of all abelian groups and group homomorphisms.
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Then K(=K,;) : Tyy— 4, is a cofunctoxj (2. In fact, for a continuous maps
J : X—Y and for a vector bundle £ over Y let f*E be the fiber product. Then,
for each element [E]—[F] of K(Y)

SHLEI-(FD=Lr*E]1-[f*F].

Let P be a topological space of one point, It is clear that K(P)=Z. Moreover,
we have continuous maps 7/ : P—X and j: X— P such that 7i(P)=P, Thus the
functors

*: K(X)~—— K(P) and j*: K(P)— K(X)
satisfy i*/*=14p. We put
R(X)=Ker(i» : K(X)~— K(P)).
Then the sequence of groups
0—> K (X)— K(X)—> K(P)—0
is split and exact, Thus, we have
K(X)=R(X)DPZ(K(P)=2Z).

K(X) is called the reduced K-group of X([2], [10]).

For a topological space X and a finite dimensional vector bundle £ over X we put
P(X,E)=the set of all continuous sections X—F,

Lemma 2.2. If X is paracompact and 1" is a closed subset of X, then the restri-

ctions homomorphism
I'(X,E)—I(Y,Ey) (fr—f1Y)

is surjective, where Ey=FEly,

Proof. We first the case where E is trivial, i.e., E=Xxk" (k=R or C), Then
I'(X,E)=Cont(X,k")=the set of all continuous functions X-—&",
Similarly, I'(Y,Ey)=Cont (¥,k"). But the restrictions

Cont ﬁ]’(’, k")——Cont(Y, k™)
S M~ fIY
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is surjective due to the Tietze extension theorem ([12]).

In general case, let us take a'locally finite open cover {U,lic=A} of X such that
Ey, is trivial. Since X is paracompact and Hausdorff, we have an open cover {V,|i=
A} such that V.U, for all 7/e=4, where V; is the closure of V. We put W,=V,(1Y.
Since I'(V;, Ey:)— I'(W,,Ey,) is surjective, for each section t=I'(Y,Ey) if we put
{;=t| W, then there exists-a section s;=I'(V,,Ey,) such that s;| W;=¢,.

Let (a;) be a partition of unity associated with the cover{V;|i=A}. We put

o () = {ae(x) si(x)  YxeEP;
VerX" V.‘.

Then s’;& I'(X,E) which is zero over all but a finite number of the V,.
Therefore %”_,; s’;(x) is actually a finite sum on a neighborhood of each xe=X.
We put s’(x)z%; s';(x) for all xe=X, then s'<=I'(X,E).
For each ye&=Y we have

s'(y)= () si(y) =22 a:(y) 1)

=(§ a;(y)) t(y)=t(y).
Thus s'|Y =t ///
Lomma 2.3. If X is compact and £ is a vector bundle over X, then there exists
a vector bundle £’ over X such that EQE’ is trivial,

Proof. Take a finite open cover {U/;|i==1,...,7} of X such that Evli=1,...,1r) is

trivial, i.e.,
Ey,=U,;xk™ (n;: nonnegative integer),

Let {a;} be a partiton of unity of X associated with the cover ({U,|i=1,...,7}.
Since Ey, istrivial we have #; linear independent continuous sections s;%...,s,™ of Ey,
({=1,...,7). Then these sections can be extended to X by the partition {e,} such
that a;s,%,...,a,5,", where a;5; is zero outside U.,(j=1,...,#:) and these are line-
arly independent sections of Ey, V;=a;1((0,1]). Then for each »&V, a,(x)s,*(x),...,

and a,(x)s? (x) generate E, as a vector space., Put n=13_#,. Then we have an epi-
ixl

morphism

7 : XXk—E



A Note on K-Groups in Topology 7

such that for each (x; A1,...,4.)0EV, x&"CX xE"

n(x; xl,...,za:gi;a,-(x)sg(x)

Hence, for each xeX.
Nyt XK —E,

is surjective. Therefore we have a bundle morphism
& E— X xk"

such that 7-&=15 ([9]). In consequence, we have the split exact sequence of bundles

over X :
0—XKer p— X X k" E— (),

Thus E@Ker p=Xxk". ///

3. Relative KX—Groups

Let X be a compact space, For each finite dimensjonal (k)-vector bundle E over
X (k=R or C) we shall define a Banach space topology on I'(X,E) as follows,
(i) When E=Xxk : '(X,E)=Cont(X,k)==A is a Banach algebra with sup norm :

VEl(X,E)  lisll=supls(x) | ([9D).

When E=X xk" : Since I'(X,E)=A", we define a norm of A" such that

V(SpenasS)EA™ 1snee s sll=lnll+. o0 +lsall.

Then A" is a Banach space([10]1, [14]).
(ii) When E is arbitrary. By Lemma 2.3 we have a vector bundle £ over .X such

that FDE’=X xk". Then
A=l (X, EQEN=I(X,EXPI (X, E').
Thus we have a surjective A-module homomorphism
#: A—I'(X,E).

Let us endow the quotient topology on I'(X,E) by ». Note that the quotient topology
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of I'(X,E) is independent of the choice of # ([9]). In this case, I'(X,E) is a Banach
space with the quotient topology.

Definition 3.1. (i) Let # be an additive category. For each pair E,FezObj(¥)
(the class of objects of ¥) if Homg(E,F) has a Banach space topology such that for
each Ge=0bj(¥) the composition of morphisms :

Homg(E,F) xHomg(F,G)——Homg(E, G)

is bilinear and continuous, then ¢ has a Banach structure. A Banack category is an
additive category provided with a Banach structure.

(ii) Let ¥ and ¢’ be additive categories, and let ¢ : ¥—— ¥’ be an additive functor.
If every object of ¥’ is a direct summand of an object of the form ¢(&) (E¢=0bj(¥)),
then ¢ is said to be quasi-surjective, If ¢ and ¥’ are Banach categories and the

map
Homy(E, F)— Homg (p(E), p(F))

is linear and continuous, then ¢ is called a Banack functor, where E,Fe0bj(¥).
Let X be a compact space, and let ¥ be a closed subset of X, Then #(X) and

&(Y) are Banach categories, and the restriction functor
¢ &(X)—€(Y) (En—Ey)

is a Banach functor ([2]), [9]). Moreover, the functor ¢ is a quasi-surjective, because
of that for each E&=0bj(£(Y)) there exists E/e=0bj(#(¥)) such that EPE’ iz a

trivial bundle over ¥ by Lemma 2.3 and thus
P(X XKy =Y xk"=EDE".
Definition 3.2. Let ¢ : ¥—— &’ be a quasi-surjective functor. We put
I'(p)={((E,F,a)|E,F&0bj(¥) and a : p(E)=¢(F)}.
For two (E,F,a), (E’,F’,a’) &I'(p) if there are isomorphisms S : E=E’ and

g : F=F’ in Morph(¥¢) (=the class of morphisms of #) such that

P(E)—Z—>0(F)
o] ew
P(E") —Z— s p(F")
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is commutative, then (E,F,a) and (E’,F’,a’) are said to be isomcrphic, written
(E,F,a)=(E',F",a’),

A triple (E,F, @)=l (¢) is called elementary if E=F and a: ¢(E)=¢(E) is hom-
otopic to- lecgy Within the automorphisms of ¢(£).

For triples (E,F,a) and (FE’,F’,a’) in I'(¢) we define the addition as

(E,F,a) +(E",F',a")=(EDE’, FOF’, aba’).

We introduce the equivalence relation “~” on I'(p) as follows.
o~ea’ in I'(p)é&=>there exist elementaries « and z’ in I'(9) such that

oc+r=0'+1’.

We put K(¢)=I{(¢)/~ and use the following notation :

d
Ir'(e) > K(9)
(E,F,a)yr—d(E,F,a).

We have the following properties ([97).

Property 3.3. With the above notations:
(i) K(p) is an abelian group with addition

d(E,F,a)+d(E',F',a’y=d(EDE’', FOF', aba’)
(if) d(E,F,a)+d(F,E,a™ ") =0
d(E,F,a)+d(F,G,p)=d(E,G,pa)
(iii) d(E,F,a)=d(E,F,a’)=>a and a’ are homotopic within the isomorphisms
from @(E) to o(F).

Let ¢ : ¥— ¥’ be a quasi-surjective functor. Since ¥ and ¥’ are abelian monoids

with direct sum of objects as additions, we get the abelian groups

S(€)Y=K(¥), S(¢')=K(¥)
where S(¥) is the symmetrization of ¥. We define the group homomorphisms as
follows :

f: K(p) —K(¥), J: K(#)— K(¢")

d(E,F,a)r—[E}~[F] [E]=[Flr—[o(F)]-[o(F)].



10 Sunghee Kang
Then there is an exact sequence of abelian groups:
i J
Koy~ K(¥¢) " K(¥"),

and moreover if there exists a functor ¢ : €/—¢ such that ¢¢ is isomorphic to 1¢,
then

4 J
0-— K(p) T K(€)T "K(¢

is split and exact ([2], (9], [10])

Property 3.4. Let X be a compact space and A=Cy(X)={f : X—k|f is contin-
wous} (k=R or C). Then I': &(X)—P(A) (E~~—T(X,E)) induces an equivalence
of categories &(X)~#(A) (See Example 2.1) ([9], [10])..

Let X be a compact space, and let ¥ be a closed subset of X. As before, the

restriction functor
P &(X)—&(Y)

is a quasi-surjective Banach functor. We put K(¢)=K.(X,Y)(Sometimes K (X, Y))
and we call it the relative K-group with respect to X and Y., We shall define

Pnt E(X)—&(X)
E r—E®... DE(n-times),

and put K'(X : Z/n)=K(p,) (Note that ¢, is also a quasi-surjective Banach functor).

For an one point space P we define
K™ YX,Y : Z/n)=Coker(K"W(P : Z/n)—— K N(X/Y : Z/n))
where Y is closed in X,

Theorem 3.5. Under the above situaﬁons
(i) for every sa=K N X : Z/n) xP... Px=nx=0

(ii) there is an exact sequence:
KXY :Z/n)—>K X :Z/n)— K (Y : Z/n).

Proof. (i) By Definition 3. 2 each elemelt of KX™'(X : Z/n) is of the form d(E,F,a),
where E, Fe0bj(€(X)) and
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a:E'=E®...OE - Z, F"=F@...®F (n-times)
Thus, if we put x=d(E,F,a) then
*P. .. Px(n-times)=d(E", F",ad...Pa(n-times))

Thus, we have to prove that d(E", F", a®...Da(n-times))=0.
Consider the triple(E", E", 1g?) and the following commutative diagram which implies

that d(E", E", a@...D a(n-times))=0:

C E'®...®E (r-times) T8 g  @F"(n-times)
e o8| |a@...@a
E*P... BE (n-times) ——— E" @...BE"(n-times).

(ii) By Definition 3.2 we have

KX :Z/n)~ K YY : Z/n)

d(E; Fp a) h’“’d(EYl FY’ aY)O

where a|Y =ay : EyD... PEy(n-times) E.;,F, D... @ Fy(n-times).

For each element

A(E", F,a"YSK™(X/Y 1 Z/%)

it is clear that E’,F/e=0bj(£(X/Y)) by the above definition, Moreover,
@ (B =, (F)" and for {y,)EX/Y (the base point) a’y,, : (E'y,)" —=» (F'y)" is
isomorphic to an elementary. For the canonical projection j: X—X/Y

d(G*(E"), J¥(F"), Ma))EK (X : Z/n)

and it is clear that d(Jj*(E")|Y, j*(F")|Y, j*(a)|Y) is isomorphic to an elementary.
Next, for an element d(E,F,a)=K WX : Z/n) we assume that

d(Ey,Fy,ay)=0 in K™Y : Z/n).

Then ay : (Ey)"_=,(Fy)" is isomorphic to an elementary in I'(¢,)
where ¢’, : 8(Y)——&(Y) (E'~—E"™)
Thus, we may consider that ay=>I¢ " i.e., d(Ey, Ey,ay)=0. Since Y is closed in X

which is compact, we have a closed subset V' of X such that YCVCX and ay=1up
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Thus, by clutching, Ex_y and the trivial bundle of rank »(=the rank of Ey) over V/Y
we have a vector bundle E” over X/Y and an isomorphism
B: (E")"—(E’)" such that

KXY :Z/m)— K HX :2Z/n)
d(EE", B) r—d(E,E, a)

Hence we have the exact sequence
KNX/)Y :Z/n)— K Y X :Z/m)— KN Y : Z/w). ///

Let A and B be Banach algebras, If there is a ring bomomorphism ¢’ : A— B (¢’Q)

=1), then there exists a Banach functor

¢ P(A)—> P(B)
M N’*M@AB

Let X be a compact space, and let ¥ be a closed subset of X. Put
A(X)={f : X— A\ f is continuous}
then A(X) is a Banach algebra with sup norm. Since the restriction
AX)— AY) (fr—T|Y)
is a ring homomorphism we have a Banach functor

P y(ﬁ(x))M?(A(Y))
M e M @ acxyAY).

We put K(p)=K(X,Y : A).

Theorem 3.6. With the above notations,

(i) K(X,Y : B)=Kx(X,Y), K(X,Y : CY=KolX,V)
(ii) If we define

K'X,Y : A)=K(XxB', Xx8°) YxB': A)
then we have the exact sequence of abelian groups :
KYX,Y: Ay~ K Y X : A)—> K (Y : 4),

where B*=[0,1] and S°= {0, 1}.



A Note on K-Groups in Topology 13

Proof. (i) At first, we want to prove that for each E&Obj(£(X)) (&=4&40r &¢)
P(X,E)®icxor k(Y)=I'(Y,Ey). For each f&I(X,E) and hek(Y) we shall put S @k
=f « k. Then for each ye&Y

(f-n) N=S50) -~

and thus f®h=fhe=I'(Y,Ey). Hence I'(X,E)Quxy R(Y)CI(Y,Ey). Conversely, by
Lemma 2.2 for each feI'(Y,Ey) there exists fe=I'(X,E) such that f|Y=f. This
implies that I'(Y, Ey)SP (X, E)Quxs k().

Hence we have
P(X,EY®uxy &(Y)=I(Y,Ey),
We have to recall that
P(AX))~E(X), PAYN~e(Y)

if A=R or C (see Property 3.4). Take anelement d{(£,F,a)&K,(X,Y) (k=R or C),

then we have an element
d(I'(X,E), P'(X,F), ay=K(X,Y; k)
where
@ : I'(X,E)Quco kY)Y, Ey))=I'(X, F)Quxk(Y) (=L (Y, Fy))

is induced from the isomorphism « : Ey=Fy.
Conversely, for each d(E’,F’,a)e=K(X,Y : k), there exist E,Fe&=0bj(£(X)) such
that

I'(X,E)=E', I'(X,F)=F', a:Ey=Fy,
where a is induced from a such that
E'Qunk(V)=T(X,E)YQuxsk(Y)=I'(Y,Ey) Ey

ag::}aa

F'®unk(Y)=I(X, F)@unk(Y)=F(Y,Fy) Fy
Since d(E,F, &)K.\ (X,Y),

K(X,Y : By=K.(X,Y).
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(ii) 'We have to note that
K¥X: A)‘=K(X><B‘, Xx80: A).
We shall prove that

K(XxB,XxSJY xB': A)— K(XxB,XxS8%: A)
—s K(¥Y'xB,Y xS8%: A)

is exact, Recall that A is a Banach algebra and

A(X xBY={f : XxB-— Al f is continuous}

For an element d(E,F,a)=K(XxB!, Xx8°: A)=K"Y(X: A)

we assume that

0=d(EQacxxsmAY XBY), FQacx.smA(Y XxBY),a|Y xSHEK (Y XB!, ¥ XS8°: A)
where

a|Y xS : EQacxxanA(Y XBY) Pacrsn A(Y X S°)
=E®acxxatr AY X S =F@ucx sy AY x8%.

By Lemma 2.2, we have an isomorphism
Bt E®ucxxstrA(X XS°JY X BY) =F@acxxsrAX X S JY X BY)
such that
Bl X x8°=a,
because that X xS°|JY x B! is compact and
X xS is cloged in X x8® {JY xB
Therefore
d(E,F.p)eK (X,Y : A)
such that
d(E,F,Bl X xS =d(E,F,a).

Next, for each d(E,F,B)e=K " (X,Y : A), since
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BlY xB' : EQuacx«nty AY X BY) 2FQ4xxaty A(Y X BY)
we have the commutative diagram
i R
E@Acxwl)A(‘YXB‘) MF@MX:B‘) A(Y xBY)

L®ueand(YxBY | oy | BIYXBY™
EQuacx-snA(Y XBY) > EQucx 2y A(Y X B, )

and thus
A(E@acx-nty A(Y XBY), FRux.p0 AY xBY), BlY xS =0

in K™N(Y; A). ///

4. Products in K-Theory

Let X and Y be compact spaces. For the projections

M X XY —s X{((x, y)r—rx)
TMe: X XYY ((x, ) —p),

vector bundle £ over X and a vector bundle F over Y, we define the external tensor
product ERF of E and F, which is a vector bundle over X XY, by ERF=N0* (E)®
M* (F). Thus for each (%, )X XY (E®F) (0 »n=E,QF, The correspondence (E,F)
— ERF induces a functor ¢ : £(X) X&(Y)— & (X xY) such that

P(EDE', F)=9(E,FYDe(E' F), ¢(E,FOF")=¢(E,F)De(E,F’).
From this functor we can define a bilinear group homemorphism
Pu: KXY xK(Y)— KX xY)

by ¢x(LE]I~[E"], [FI1—-[F'D=[p(E,F)]+[9(E',F)]
—[Q(E, F")Y]—[Q(E!,F)] +ereresrveracensns *) (9.
For each x=XK(X) and y=K(Y) we put

Pulx, y)==xJy
Sometimes ¢, is called the cup product in K-theory. The diagonal map
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defines the group homomorphism

A*: K(X xX)— K(X).

Thus A% : K(X) X K(X)— K(XXX)—> K(X) is a group homomorphism. We put
for x, x'&K(X)

A*0u(2, ) = AMEUR) =22 =2 EK (X)) coreiriemrinrenivirnnienns *2)
With this operator K(X) is provided with a commutative ring structure ([2], [97]).
Lemma 4.1. For locally compact spaces X and Y there is the cup-product
K(X)xK{)— K(XXY)
which satisfies the associativity and the commutativity.

Proof. Let X and ¥ be the one point compactifications of X and Y respectively.
Then, we have the exact sequence of abelian groups:

KX XY XR)—>K({(XVY)XxR)— K(X XY -XVY)
—— K(X) xY)— K(XVY)

where X\/¥ = {00} x VX x {c0} ([9]). Note that X xY =X x¥V XV,

‘Thus, we have the exact sequence

K(X XY XR)— K((XVY) xR)—+ K(X xY)
e K(X x V)= K(XVY)

Since we can prove that

K(XXYXxR)— K(XVY)XR)
is surjective ([91), we have the exact sequence

0~ K (X XY)— K(Xx¥)— K(XVY).
Moreover, since

K(X)=Ker(K(X)—K({==})) ([9D),

we have the inclusion i : K(X)— K (X). Similarly, there is the inclusion
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ji K@)— K.
Consider the following diagram:

0
,
K(X)yxK(Y)—ea K(X XY)
in. . U=0u o+, .
K(X)XK(}:\)—-———-—"K(XXY)
AN oY .
NK(XVY)
(exact)

where 7 is induced from the inclusions X——XVY (x—-xX% {o0}) and Vs XV¥

(yr— {00} x3). In fact, 7 is injective, because of that for each ((E]—~[TDN=K(XVY)
YCE]-ITD =E] e I=LT] 3x D X ([E eyt ] LT 1 s3]

and thus
T((E]-[TD=0=[E1=[T], ie, Ex=T.

We shall construct the map @ in the above diagram.
For x=K(X) and ye=K(Y)

i(2) X j(NEK (X)X KY)

Thus (%) UF(y)=K(X x¥). We want to prove that the restriction of i(x)|Jj(y) to
K(XVY) is zero. By the definition of K (X) above 7(x) .., =0. Similary, j7(») |, =0.
Therefore, we have i(x) Jj(y) | X X {oo} =0=i(x) j(») ] {so} XY

This means that the restriction of {(x) JF(») to K (X \/1;') is zero, From the exact

sequence

x » . L -
0—s K (X XY)— K(X x¥)~— K(XVY)
we have an element x| Jye=K (X xY) such that s(xj»)=i{x) ().

We define 8(x,y)=x{Jy. Since i(x)Us(»)=4(») Ui(x) in K(XxY) it is clear that
xJy=yUx in K(X xY). Moreover, for another locally compact space Z, 2e==K(Z)
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and the inclusion / : K(Z)— K(Z)

since  (#(x) UsONUIR =i(x) U () UN=)) (9D.
we have also

UnUz=xUOGUa. ///

Theorem 4.2. Let X and Y be finite C W-complexes, and let X be the #'* skeleton
of X. If we put ’

K (X)=Ker (K(X)— K(X"™)),
then
UTK (X)) XK (Y) 1 Ky (X)) X Ky (V) Ky (X XY,
Proof. Since X and Y are finite CW-complexes, X and Y are compact. We put

the cellular decomposition of X ={e;: A=1,...,m},

the cellular decomposition of Y={e’yy: A’ =1,...,7}.

Then the cellular decomposition of X XY is {e;xe'y/|A=1,...,m and X' =1,...,%}.

By our definition

(E] —[FleKm(X) D E [ xmz=F [xn
LE I-[FIEKn(Y)DE [y F | yt-u

Since

CEI-LFDUCE T-LF' D =[o(E,EN]+[p(E,F)]
— L&, F) I+ [e(F, E) ]}

(for notations see (*)) above), where ¢(£,E ) =EQE".

For each point(x,v)e=X xY consider
[E{BE’JW, u) + EF®F/3(u,u)"“ {EE®F/](H, v)+[F®E’](u. v}} .

Taking (u, v)e=(X xY) "1 we have the following two cases:
1) uce,, dim ¢; <n~—1 and vese'y, dim 'y <Snt+p—1—dim e,
2) uc=e;, dim e;=n+p—1-—dim ¢y, and vese’yr, dim e’y p—1.

In case 1) :
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EE@E’](',"):‘E{I}‘@E," EF®F’](u,U)zﬁu®Flv
[FQF,](u,v):Fu®E’v EE®F’](:¢,0)=Eu®F'ﬁ-

Thus, ([(E]-[FDU(E ]~[F'EKmn(X xY).
In case 2):

[E®E,](u,u):E;’l}®E,v [nglj(u,u)z[’?;@]?,v
[ERF Jwn=ERF, [FBE Jun=F.QF,
Thus ([E1-[FDUULE I-[F'DEKmnXXY). ///
Let T : X——Y be a n-fold covering such that X and Y are locally compact (Note

that X and Y are path-connected). For each finite dimensional (&)-vector bundle E
over X (k=R or C) the vector bundle F=T 4(E) over Y is defined as follows.

ﬂ*(E)sz,F@l E, (v&=Y).

uEx= vy
Let U be an open subset of Y. Then we can put
N W) =V,U... UVa

where U=V, (i=1,...,# and = : homeomorphic) and {=j==DV,\V;=¢,
‘The topology of Fy is induced by the bijection

FUZEVI@' .y @EVHE(EV;)"

Theorem 4.3. With the above notations
(i) F is a well-defined vector bundle over ¥
(i) My : K(X)— K(Y)
[E] »—[TW(&)]
is a group homomorphism, and for ¥&K(X) and y=K(Y)
Ha(TM*(p)x) =y« Mulx)

{for notation y- 1 4(x) see(*;) above).

Proof. (i) It suffices to prove that the locally triviality of W4 (E)=F. For each
=Y we shall take an open neighborhood U of v such that

M H)=Vil... UV By =V xk({E=1,...,7)

(k=R or C), where i#j=—=—DV,V;=¢ and UxV, (i=1,...,n).
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By our definition above
MelEYy=Fy=xU X (8*)"==U k"™,
(ii) Note that for locally compact spaces X and ¥ we have defined the cup-product

KX)xK{)—s K(XxY)

by Lemma 4. 1. Since [E,], [E.J=K(X)==[E J+[E;1=E/®E.],
we have the following : For each ve=Y

TeE@EN= @ (EDEy),

sexT ()

= @1 ((Ex)u@(Ez)u)

wERT (w)

=(@ EO®, (En)

xEx~ H(9) G~ ()
= Ma(ED) D MulE2),
=("*(E1)@“¢-(Ea)):-

Hence

Mo (LELDE:]= Wa([E:D + Mw(E2D).

That is, T« is a group homomorphism,
To prove that T4 (T*(») + )=y + Mu(x) we shall prove that for each ve=Y

(Mu(T*() « 2))o=(y * MWulx)),.

By our definition,

(Ma(M*() + H))y= @ (W*() - 2)u

uex™ (v)

- @ Y.Ox,.

=1 1(-;)

where we have to note that We(3).=», (W (x)=v), and

(& Nul®)) =y, Mu(x),=5,( @ %,)

g™ iy

= D Q.

xex=levy

Hence Mu(W*(y) *2)=y- Mu(x). ///
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Let T : X——Y be a principal covering with finite group G, ie., X/G=Y and
G acts freely on X,

Proposition 4.4. Under the above circumstances we also assume that X and ¥ are
locally compact,
Then for each xe&=K(X)

(*- W) (B)=Zop(8)*()

where o(g)* : K(X)— K(X) is the automorphism of K(X) induced by the action of
G,

Proof. For each #e=X we have to note that
veeG M(gm))=TN(w)

Thus, by our definition

VoezY (H*(x))r—-%}x.m

n(K) =¥

Thus, if T (#)=v then

(M* (M (2))) = (Malx)),= mzax'“)'

£CHY ="

Cn the other hand, for p(g) : X—— X (urh—p(g) (u)=g(u)), which is the action of
G on X,

(EP*(g) (x))uz .@ x\r(u)zég’xltu)
and thus for each we=X

(g;p*(g) ()= (M* Walx))u. ///
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