A Note on K-Groups in Topology

Sunghee Kang

Jeonju Technical Junior College, Chonju 560-110, Korea

1. Introduction

This paper is mainly concerned with the K-theory which is fundamental and crucial to the study of index theory. Early in 1960, English Mathematician M.F. Atiyah formulated K-groups for topological space ([2]), and then the K-groups in algebraic systems were regulated by H. Bass approximately in 1965. [4]

Thus we have two branches in K-theory, one is algebraic K-theory developed by J. Milnor ([11]) and the other one is geometric K-theory which has been elaborately established by J.F. Adams, L. Hodgkin and M. Karoubi, etc([1], [6], [8], [13]).

The purpose of this paper is to epitomize some of results which has been obtained in seminar on K-theory performed during the last two semesters under my academic advisor. The contents of the paper is as follows.

In Section 2, we outline the formulation of K-groups and then prove some basic properties (Lemma 2.2 and Lemma 2.3).

In Section 3, we deal with the relative K-groups. The main results are Theorem 3.5 and Theorem 3.6. In Theorem 3.5, we shall prove that for the additive functor $\varphi_n : \varepsilon(X) \longrightarrow \varepsilon(X)$ $(E \mapsto E \oplus \cdots \oplus E(n-\text{times}))$ if we put $K(\varphi_n) = K^{-1}(X : \mathbb{Z}/n)$ and $K^{-1}(X,Y;\mathbb{Z}/n) = \text{Coker } (K^{-1}(P : \mathbb{Z}/n) \longrightarrow K^{-1}(X/Y : \mathbb{Z}/n))$ then $K^{-1}(X,Y : \mathbb{Z}/n) \longrightarrow K^{-1}(X : \mathbb{Z}/n) \longrightarrow K^{-1}(Y : \mathbb{Z}/n)$ is exact, where X is compact, Y is a closed subset of X and P is an one point space. Theorem 3.6 proves that for a Banach algebra A

$$K^{-1}(X,Y:A) \longrightarrow K^{-1}(X:A) \longrightarrow K^{-1}(Y:A)$$

is exact.

In Section 4, we study cup-product in K-groups. In particular, we prove in Theorem 4.3 that for locally compact spaces X and Y and a n-fold covering $\Pi: X \longrightarrow Y$, we have $\Pi_*(\Pi^*(y) \cdot x) = y \cdot \Pi_*(x)$, where $x \in K(X)$ and $y \in K(Y)$.

2. Preliminaries

Let M be an abelian monoid, and let F(M) be the free abelian group with basis $\{ [m] | m \in M \}$. We take a subgroup D(M) which is generated by linear combinations of the form [m+n]-[m]-[n], and put

$$S(M) = F(M)/D(M)$$
.

Then S(M) is an abelian group with addition

$$[m]+[n]=[m+n].$$

which is called the *symmetrization* of M. It is clear that the inverse of $[m] \subseteq S(M)$ is -[m] = [-m], where we have to note that it $[m] \subseteq F(M)$, then $[-m] \subseteq F(M)$. In the product $M \times M$ we shall consider two equivalence relations:

$$(m,n)\sim (m',n') \iff \exists b \in M \cdot \exists \cdot m+n'+b=n+m'+b$$

and

$$(m,n)\approx (m',n') \iff \exists p,q \in M \cdot \Rightarrow \cdot (m,n) + (p,p) = (m',n') + (q,q)$$

i.e., $m+p=m'+q$ and $n+p=n'+q$.

Then we have

$$S(M) \cong M \times M / \sim \cong M \times M / \approx$$
.

(**Proof**) Let [m, n] be the equivalent class of (m, n) in $M \times M/\sim$. Then [m, m] = 0 and [m, n] + [n, m] = 0. That is, if we put [m, n] = [m] - [n], then [m, n] is the element [m] - [n] of S(M). Hence we can easily prove that $S(M) \cong M \times M/\sim$.

Next we shall prove that $M \times M / \sim \cong M \times M / \approx$. Let $\{m, n\}$ be the equivalent class of (m, n) in $M \times M / \approx$. Then for all $m \in M$ $\{m, m\} = \{0, 0\}$ is the zero point of $M \times M / \approx$. Thus we can denote such that $\{m, n\} = \{m\} - \{n\}$. The map γ defined by

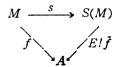
$$\gamma: M \times M / \sim \longrightarrow M \times M / \approx$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

is a group homomorphism, because of that if [m,n]=[m',n'], then $\{m,n\}=\{m',n'\}$. (Note that $\{m,n\}+\{n',m'\}=\{m+n',n+m'\}=\{0,0\}$ because that m+n'+p=n+m'+p by [m,n]=[m',n']. That is $\{m,n\}=-\{n',m'\}=\{m',n'\}$). It is clear that γ is an

isomorphism. ///

We define the monoid homomorphism $s: M \longrightarrow S(M)$ by s(m) = [m, 0] = [m]. Then the symmetrization S(M) satisfies the universal property such that for an abelian group A and a monoid homomorphism $f: M \longrightarrow A$ there exists a unique group homomorphism $\tilde{f}: S(M) \longrightarrow A$ such that the diagram



is commutative([7], [9]).

Example 2.1. Let A be a commutative ring with 1, and let $\mathscr{P}(A)$ be the category consisting of all finitely generated projective A-modules and A-module homomorphisms. Then $\mathscr{P}(A)$ is an abelian monoid with direct sum as its addition. We put $K(A) = S(\mathscr{P}(A))$

(i) If (A, \mathfrak{M}) is a local ring, then $K(A) \cong \mathbb{Z}$ (the ring of all integers).

Proof. We prove that any minimal basis of M is a basis of M. Since $M/\mathfrak{M}M = M \otimes_A k$ is a vector space over $k = A/\mathfrak{M}$, it suffices to prove that, if $x_1, \ldots, x_n \in M$ are such that their images $\overline{x}_1, \ldots, \overline{x}_n$ in $M/\mathfrak{M}M$ are linearly independent over k, then they are linearly independent over k. If M is projective, then it is flat. The two following conditions are equivalent:....(A)

- (1) M is A-flat
- (2) If $a_i \in A$, $x_i \in M$ $(1 \le i \le r)$ and $\sum_{i=1}^r a_i x_i = 0$, then there exist an integer s, elements $b_{ij} \in A$ and $y_j \in M(1 \le j \le s)$ such that $\sum_i a_i b_{ij} = 0$ for all j and $x_i = \sum_j b_{ij} y_j$ for all i. Now we use induction on n. When n=1, put $ax_1=0$. Then, by (A) there exist an integer s, elements $b_{1j} \in A$ and $y_j \in M(1 \le j \le s)$ such that $ab_{1j} = 0$ for all $j = 1, \ldots, s$ and $x_1 = \sum_{j=1}^s b_{1j} y_j$. Since $\overline{x}_1 \neq 0$ in $M/\mathfrak{M}M$, there exists an element $b_{1j} \in \mathfrak{M}$. Assume $b_{1i} \in \mathfrak{M}$.

Then b_{11} is a unit in A and $ab_{11}=0$. Hence a=0. Suppose n>1 and $\sum_{i=1}^{n} a_i x_i = 0$. Also, by (A), there exist an integer s, elements $b_{ij} \in A$ and $y_j \in M(1 \le j \le s)$ such that $\sum_{i} a_i b_{ij} = 0$ for all $j=1,\ldots,s$ and $x_i = \sum_{j} b_{ij} y_j$ for all $i=1,\ldots,n$. Since $\bar{x}_n \neq 0$ in $M/\mathfrak{M}M$ we have $b_{nj} \notin \mathfrak{M}$ for at least one j. Then since b_{nj} is a unit in A, we have

$$a_n = \sum_{i=1}^{n-1} (-b_{ij}/b_{nj})a_i$$
.

Therefore, if $c_i = -b_{ij}/b_{nj}$,

$$0 = \sum_{i=1}^{n} a_i x_i = a_1(x_1 + c_1 x_n) + \ldots + a_{n-1}(x_{n-1} + c_{n-1} x_n).$$

Since $\overline{x}_1 + \overline{c}_1 \overline{x}_n, \ldots, \overline{x}_{n-1} + \overline{c}_{n-1} \overline{x}_n$ are linearly independent over k,

we have
$$a_1 = \ldots = a_{n-1} = 0$$
 and $a_n = \sum_{i=1}^{n-1} c_i a_i = 0$. ///

(ii) If A is a principal ideal domain, then $S(\mathcal{P}(A)) = K(A) \cong \mathbb{Z}$.

Proof. Since A is a principal ideal domain it is a Dedekind domain (or A is a field). For two ideals \mathfrak{A}_1 and \mathfrak{A}_2 of A if there exist elements a_1 and a_2 of A such that $a_2\mathfrak{A}_1 = a_1\mathfrak{A}_2$, then we say that \mathfrak{A}_1 and \mathfrak{A}_2 belong to the *same ideal class*. Then, the ideal classes of A, which is denoted by $\mathscr{C}(A)$, is an abelian group under multiplication([4], [11]). In particular, the identity of $\mathscr{C}(A)$ is the class of principal ideals and $K(A) \cong \mathbb{Z} \oplus \mathscr{C}(A)$ ([11]). In our case, since A is a principal ideal domain $\mathscr{C}(A) = \{0\}$, and thus $K(A) \cong \mathbb{Z}$. ///

Throughout this paper, by a topological space we mean a Hausdorff topological space.

Let X be a topological space, and let $\mathscr{E}_k(X)$ be the category consisting of all k-vector bundles over X with finite ranks and bundle morphisms, where $k = \mathbb{R}$ (reals) or \mathbb{C} (complexes). We shall sometimes put $\mathscr{E}(X) = \mathscr{E}_k(X)$. It is easy to prove that $\mathscr{E}(X)$ is an abelian monoid with the Whitney sum of bundles ([5], [9]). Moreover, $\mathscr{E}(X)$ is an additive category ([9]).

For a topological space X we define

$$K_{\bullet}(X) = S(\mathscr{E}_{\bullet}(x)).$$

and we call $K_k(X)$ the real (when k=R) (complex when k=C) K-group over X. Let us put

To, = the category consisting of topological spaces and continuous maps between topological spaces

and

 A_b =the category of all abelian groups and group homomorphisms.

Then $K(=K_k): \mathbf{T}_{op} \longrightarrow A_k$ is a cofunctor ([2]). In fact, for a continuous maps $f: X \longrightarrow Y$ and for a vector bundle E over Y let f^*E be the fiber product. Then, for each element [E]-[F] of K(Y)

$$f^*([E]-[F])=[f^*E]-[f^*F].$$

Let P be a topological space of one point. It is clear that $K(P) \cong \mathbb{Z}$. Moreover, we have continuous maps $i: P \longrightarrow X$ and $j: X \longrightarrow P$ such that ji(P) = P. Thus the functors

$$i^*: K(X) \longrightarrow K(P)$$
 and $j^*: K(P) \longrightarrow K(X)$

satisfy $i*j*=1_{k(P)}$. We put

$$\tilde{K}(X) = \text{Ker}(i*: K(X) \longrightarrow K(P)).$$

Then the sequence of groups

$$0 \longrightarrow \tilde{K}(X) \longrightarrow K(X) \longrightarrow K(P) \longrightarrow 0$$

is split and exact. Thus, we have

$$K(X) \cong \tilde{K}(X) \oplus Z(K(P) \cong Z).$$

 $\tilde{K}(X)$ is called the reduced K-group of X([2], [10]).

For a topological space X and a finite dimensional vector bundle E over X we put

$$\Gamma(X,E)$$
 = the set of all continuous sections $X \longrightarrow E$.

Lemma 2.2. If X is paracompact and Y is a closed subset of X, then the restrictions homomorphism

$$\Gamma(X,E) \longrightarrow \Gamma(Y,E_Y) \ (f \longmapsto f \mid Y)$$

is surjective, where $E_{Y}=E|_{Y}$.

Proof. We first the case where E is trivial, i.e., $E \cong X \times k^{n} (k = R \text{ or } C)$. Then

$$\Gamma(X,E) = \operatorname{Cont}(X,k^n) = \text{the set of all continuous functions } X \longrightarrow k^n$$
.

Similarly, $\Gamma(Y, E_Y) = \text{Cont } (Y, k^n)$. But the restrictions

$$\begin{array}{ccc}
\operatorname{Cont}(X, k^{n}) & \longrightarrow & \operatorname{Cont}(Y, k^{n}) \\
\downarrow & & & \downarrow \\
f & & & f \mid Y
\end{array}$$

is surjective due to the Tietze extension theorem ([12]).

In general case, let us take a locally finite open cover $\{U_i | i \in \Lambda\}$ of X such that E_{v_i} is trivial. Since X is paracompact and Hausdorff, we have an open cover $\{V_i | i \in \Lambda\}$ such that $V_i \subset U_i$ for all $i \in \Lambda$, where V_i is the closure of V_i . We put $W_i = V_i \cap Y$. Since $\Gamma(V_i, E_{V_i}) \longrightarrow \Gamma(W_i, E_{W_i})$ is surjective, for each section $t \in \Gamma(Y, E_Y)$ if we put $t_i = t \mid W_i$ then there exists a section $s_i \in \Gamma(V_i, E_{V_i})$ such that $s_i \mid W_i = t_i$.

Let (α_i) be a partition of unity associated with the cover $\{V_i | i \in A\}$. We put

$$s'_{i}(x) = \begin{cases} \alpha_{i}(x) & s_{i}(x) & \forall x \in V_{i} \\ 0 & \forall x \in X - V_{i}. \end{cases}$$

Then $s'_i \in \Gamma(X, E)$ which is zero over all but a finite number of the V_i .

Therefore $\sum_{i \in A} s'_i(x)$ is actually a finite sum on a neighborhood of each $x \in X$.

We put $s'(x) = \sum_{i \in A} s'_i(x)$ for all $x \in X$, then $s' \in \Gamma(X, E)$.

For each $y \subseteq Y$ we have

$$s'(y) = \sum_{i \in A} \alpha_i(y) \quad s_i(y) = \sum_{i \in A} \alpha_i(y) \quad t(y)$$
$$= (\sum_{i \in A} \alpha_i(y)) \quad t(y) = t(y).$$

Thus s'|Y=t. ///

Lomma 2.3. If X is compact and E is a vector bundle over X, then there exists a vector bundle E' over X such that $E \oplus E'$ is trivial.

Proof. Take a finite open cover $\{U_i|i=1,\ldots,r\}$ of X such that $E_{v_i}(i=1,\ldots,r)$ is trivial, i.e.,

$$E_{u_i} \cong U_i \times k^{n_i}$$
 (n_i : nonnegative integer).

Let $\{\alpha_i\}$ be a partition of unity of X associated with the cover $\{U_i | i=1,\ldots,r\}$. Since E_{v_i} is trivial we have n_i linear independent continuous sections $s_i^{-1},\ldots,s_i^{-n_i}$ of E_{v_i} $(i=1,\ldots,r)$. Then these sections can be extended to X by the partition $\{\alpha_i\}$ such that $\alpha_i s_i^{-1},\ldots,\alpha_i s_i^{-n_i}$, where $\alpha_i s_i^{-j}$ is zero outside $U_i(j=1,\ldots,n_i)$ and these are linearly independent sections of E_{v_i} , $V_i=\alpha_i^{-1}((0,1])$. Then for each $x \in V_i$ $\alpha_i(x)s_i^{-1}(x),\ldots$, and $\alpha_i(x)s_i^{n_i}(x)$ generate E_x as a vector space. Put $n=\sum_{i=1}^r n_i$. Then we have an epimorphism

$$\eta: X \times k^n \longrightarrow E$$

such that for each $(x; \lambda_1, \ldots, \lambda_n) \in V_i \times k^n \subset X \times k^n$

$$\eta(x; \lambda_1, \ldots, \lambda_n) = \sum_{j=1}^{n_i} \alpha_i(x) S_i^j(x)$$

Hence, for each $x \in X$.

$$\eta_x: x \times k^n \longrightarrow E_x$$

is surjective. Therefore we have a bundle morphism

$$\xi: E \longrightarrow X \times k^n$$

such that $\eta \cdot \xi = 1_B$ ([9]). In consequence, we have the split exact sequence of bundles over X:

$$0 \longrightarrow \operatorname{Ker} \eta \longrightarrow X \times k^n \longrightarrow E \longrightarrow 0.$$

Thus $E \oplus \text{Ker } \eta = X \times k^n$. ///

3. Relative K-Groups

Let X be a compact space. For each finite dimensional (k)-vector bundle E over X(k=R) or C) we shall define a Banach space topology on $\Gamma(X,E)$ as follows.

(i) When $E = X \times k : \Gamma(X, E) = \text{Cont}(X, k) = A$ is a Banach algebra with sup norm :

$$v_s \in \Gamma(X, E)$$
 $||s|| = \sup_{x \in X} |s(x)|$ ([9]).

When $E=X\times k^n$: Since $\Gamma(X,E)\cong A^n$, we define a norm of A^n such that

$$\forall (s_1, \ldots, s_n) \in A^n \quad ||(s_1, \ldots, s_n)|| = ||s_1|| + \ldots + ||s_n||.$$

Then A is a Banach space([10], [14]).

(ii) When E is arbitrary. By Lemma 2.3 we have a vector bundle E' over X such that $E \oplus E' \cong X \times k^n$. Then

$$A''\cong\Gamma(X,E\oplus E')\cong\Gamma(X,E)\oplus\Gamma(X,E').$$

Thus we have a surjective A-module homomorphism

$$u: A^n \longrightarrow \Gamma(X, E)$$
.

Let us endow the quotient topology on $\Gamma(X,E)$ by u. Note that the quotient topology

of $\Gamma(X,E)$ is independent of the choice of u ([9]). In this case, $\Gamma(X,E)$ is a Banach space with the quotient topology.

Definition 3.1. (i) Let \mathscr{C} be an additive category. For each pair $E, F \in \mathsf{Obj}(\mathscr{C})$ (the class of objects of \mathscr{C}) if $\mathsf{Hom}_{\mathscr{C}}(E,F)$ has a Banach space topology such that for each $G \in \mathsf{Obj}(\mathscr{C})$ the composition of morphisms:

$$\operatorname{Hom}_{\mathscr{C}}(E,F) \times \operatorname{Hom}_{\mathscr{C}}(F,G) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(E,G)$$

is bilinear and continuous, then & has a Banach structure. A Banach category is an additive category provided with a Banach structure.

(ii) Let $\mathscr C$ and $\mathscr C'$ be additive categories, and let $\varphi : \mathscr C \longrightarrow \mathscr C'$ be an additive functor. If every object of $\mathscr C'$ is a direct summand of an object of the form $\varphi(E)$ ($E \rightleftharpoons Obj(\mathscr C)$), then φ is said to be *quasi-surjective*. If $\mathscr C$ and $\mathscr C'$ are Banach categories and the map

$$\operatorname{Hom}_{\mathscr{C}}(E,F) \longrightarrow \operatorname{Hom}_{\mathscr{C}'}(\varphi(E),\varphi(F))$$

is linear and continuous, then φ is called a Banach functor, where $E, F \in Obj(\mathscr{C})$.

Let X be a compact space, and let Y be a closed subset of X. Then $\mathscr{E}(X)$ and $\mathscr{E}(Y)$ are Banach categories, and the restriction functor

$$\varphi: \mathscr{E}(X) \longrightarrow \mathscr{E}(Y) \ (E \longmapsto E_{\psi})$$

is a Banach functor ([2]), [9]). Moreover, the functor φ is a quasi-surjective, because of that for each $E \in Obj(\mathscr{E}(Y))$ there exists $E' \in Obj(\mathscr{E}(Y))$ such that $E \oplus E'$ is a trivial bundle over Y by Lemma 2.3 and thus

$$\varphi(X \times k^n) = Y \times k^n \cong E \oplus E'$$
.

Definition 3.2. Let $\varphi: \mathscr{C} \longrightarrow \mathscr{C}'$ be a quasi-surjective functor. We put

$$\Gamma(\varphi) = \{(E, F, \alpha) | E, F \in \mathsf{Obj}(\mathscr{C}) \text{ and } \alpha : \varphi(E) \cong \varphi(F) \}.$$

For two (E, F, α) , $(E', F', \alpha') \in \Gamma(\varphi)$ if there are isomorphisms $f : E \cong E'$ and $g : F \cong F'$ in Morph(\mathscr{C}) (=the class of morphisms of \mathscr{C}) such that

$$\begin{array}{ccc}
\varphi(E) & \xrightarrow{\alpha} \varphi(F) \\
\varphi(f) & & & \downarrow \varphi(g) \\
\varphi(E') & \xrightarrow{\alpha'} \varphi(F')
\end{array}$$

is commutative, then (E, F, α) and (E', F', α') are said to be isomorphic, written $(E, F, \alpha) \cong (E', F', \alpha')$.

A triple $(E, F, \alpha) \in \Gamma(\varphi)$ is called *elementary* if E = F and $\alpha : \varphi(E) \cong \varphi(E)$ is homotopic to $1_{\varphi(E)}$ within the automorphisms of $\varphi(E)$.

For triples (E, F, α) and (E', F', α') in $\Gamma(\varphi)$ we define the addition as

$$(E,F,\alpha)+(E',F',\alpha')=(E\oplus E',F\oplus F',\alpha\oplus\alpha').$$

We introduce the equivalence relation " \sim " on $\Gamma(\varphi)$ as follows. $\sigma \sim \sigma'$ in $\Gamma(\varphi) \Longleftrightarrow$ there exist elementaries τ and τ' in $\Gamma(\varphi)$ such that

$$\sigma + \tau \cong \sigma' + \tau'$$
.

We put $K(\varphi) = \Gamma(\varphi)/\sim$ and use the following notation:

$$\begin{array}{ccc}
\Gamma(\varphi) & \xrightarrow{d} K(\varphi) \\
& & & & \downarrow \\
(E, F, \alpha) & \xrightarrow{d} d(E, F, \alpha).
\end{array}$$

We have the following properties ([9]).

Property 3.3. With the above notations:

(i) $K(\varphi)$ is an abelian group with addition

$$d(E,F,\alpha)+d(E',F',\alpha')=d(E\oplus E',F\oplus F',\alpha\oplus\alpha')$$

(ii)
$$d(E,F,\alpha)+d(F,E,\alpha^{-1})=0$$

$$d(E,F,\alpha)+d(F,G,\beta)=d(E,G,\beta\alpha)$$

(iii) $d(E,F,\alpha)=d(E,F,\alpha')$ \iff α and α' are homotopic within the isomorphisms from $\varphi(E)$ to $\varphi(F)$.

Let $\varphi: \mathscr{C} \longrightarrow \mathscr{C}'$ be a quasi-surjective functor. Since \mathscr{C} and \mathscr{C}' are abelian monoids with direct sum of objects as additions, we get the abelian groups

$$S(\mathscr{C}) = K(\mathscr{C}), S(\mathscr{C}') = K(\mathscr{C}')$$

where $S(\mathscr{C})$ is the symmetrization of \mathscr{C} . We define the group homomorphisms as follows:

$$i: K(\varphi) \longrightarrow K(\mathscr{C}), \qquad j: K(\mathscr{C}) \longrightarrow K(\mathscr{C}')$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Then there is an exact sequence of abelian groups:

$$K(\varphi) \xrightarrow{i} K(\mathscr{C}) \xrightarrow{j} K(\mathscr{C}'),$$

and moreover if there exists a functor $\psi: \mathscr{C}' \longrightarrow \mathscr{C}$ such that $\phi \psi$ is isomorphic to $1\mathscr{C}'$, then

$$0 \longrightarrow K(\varphi) \xrightarrow{i} K(\mathscr{C}) \xrightarrow{j} K(\mathscr{C}') \longrightarrow 0$$

is split and exact ([2], [9], [10]).

Property 3.4. Let X be a compact space and $A = C_k(X) = \{f : X \longrightarrow k | f \text{ is continuous}\}$ (k = R or C). Then $\Gamma : \mathscr{E}(X) \longrightarrow \mathscr{P}(A)$ $(E \longmapsto \Gamma(X, E))$ induces an equivalence of categories $\mathscr{E}(X) \sim \mathscr{P}(A)$ (See Example 2.1) ([9], [10]).

Let X be a compact space, and let Y be a closed subset of X. As before, the restriction functor

$$\varphi: \mathscr{E}(X) \longrightarrow \mathscr{E}(Y)$$

is a quasi-surjective Banach functor. We put $K(\varphi) = K_{\bullet}(X,Y)$ (Sometimes K(X,Y)) and we call it the *relative K-group* with respect to X and Y. We shall define

$$\begin{array}{ccc} \varphi_n \colon \mathscr{E}(X) {\longrightarrow} \mathscr{E}(X) \\ & & & & & & \\ E & \longmapsto E \oplus \ldots \oplus E(n\text{-times}), \end{array}$$

and put $K^{-1}(X: \mathbb{Z}/n) = K(\varphi_n)$ (Note that φ_n is also a quasi-surjective Banach functor). For an one point space P we define

$$K^{-1}(X,Y:\mathbb{Z}/n) = \operatorname{Coker}(K^{-1}(P:\mathbb{Z}/n) \longrightarrow K^{-1}(X/Y:\mathbb{Z}/n))$$

where Y is closed in X.

Theorem 3.5. Under the above situations

- (i) for every $x \in K^{-1}(X : \mathbb{Z}/n)$ $x \oplus \dots \oplus x = nx = 0$
- (ii) there is an exact sequence:

$$K^{-1}(X/Y: \mathbb{Z}/n) \longrightarrow K^{-1}(X: \mathbb{Z}/n) \longrightarrow K^{-1}(Y: \mathbb{Z}/n).$$

Proof. (i) By Definition 3. 2 each elemelt of $K^{-1}(X : \mathbb{Z}/n)$ is of the form $d(E, F, \alpha)$, where $E, F \in \text{Obj}(\mathscr{E}(X))$ and

$$\alpha: E^n = E \oplus ... \oplus E \xrightarrow{\cong} F^n = F \oplus ... \oplus F$$
 (*n*-times)

Thus, if we put $x=d(E,F,\alpha)$ then

$$x \oplus \ldots \oplus x (n-\text{times}) = d(E^n, F^n, \alpha \oplus \ldots \oplus \alpha (n-\text{times}))$$

Thus, we have to prove that $d(E^n, P^n, \alpha \oplus \ldots \oplus \alpha(n-\text{times})) = 0$. Consider the triple $(E^n, E^n, 1_{E^{n^2}})$ and the following commutative diagram which implies that $d(E^n, E^n, \alpha \oplus \ldots \oplus \alpha(n-\text{times})) = 0$:

$$E^{n} \oplus \dots \oplus E^{n} (n-\text{times}) \xrightarrow{\alpha \oplus \dots \oplus \alpha} F^{n} \oplus \dots \oplus F^{n} (n-\text{times})$$

$$\downarrow \alpha^{-1} \oplus \dots \oplus \alpha^{-1}$$

$$E^{n} \oplus \dots \oplus E^{n} (n-\text{times}) \longrightarrow E^{n} \oplus \dots \oplus E^{n} (n-\text{times}).$$

(ii) By Definition 3.2 we have

where $\alpha | Y = \alpha_Y : E_Y \oplus ... \oplus E_Y (n-\text{times}) \xrightarrow{\cong} F_Y \oplus ... \oplus F_Y (n-\text{times}).$

For each element

$$d(E', F', \alpha') \in K^{-1}(X/Y : \mathbb{Z}/n)$$

it is clear that $E', F' \in \text{Obj}(\mathscr{E}(X/Y))$ by the above definition. Moreover, $\alpha' : (E')^n \xrightarrow{\cong} (F')^n$ and for $\{y_o\} \in X/Y$ (the base point) $\alpha'_{\{y_o\}} : (E'_{y_o})^n \xrightarrow{\cong} (F'_{y_o})^n$ is isomorphic to an elementary. For the canonical projection $j : X \longrightarrow X/Y$

$$d(j^*(E'), j^*(F'), j^*(\alpha)) \in K^{-1}(X : \mathbb{Z}/n)$$

and it is clear that $d(j^*(E')|Y, j^*(F')|Y, j^*(\alpha)|Y)$ is isomorphic to an elementary. Next, for an element $d(E, F, \alpha) \in K^{-1}(X : \mathbb{Z}/n)$ we assume that

$$d(E_{Y}, F_{Y}, \alpha_{Y}) = 0$$
 in $K^{-1}(Y : \mathbb{Z}/n)$.

Then $\alpha_Y: (E_Y)^n \xrightarrow{\cong} (F_Y)^n$ is isomorphic to an elementary in $\Gamma(\psi'_n)$ where $\psi'_n: \mathscr{E}(Y) \longrightarrow \mathscr{E}(Y)$ $(E' \longmapsto E'^n)$

Thus, we may consider that $\alpha_Y \simeq 1_{(E_Y)}^n$ i.e., $d(E_Y, E_Y, \alpha_Y) = 0$. Since Y is closed in X which is compact, we have a closed subset V of X such that $Y \subset V \subset X$ and $\alpha_Y = 1_{(E_Y)}^n$,

Thus, by clutching, E_{X-Y} and the trivial bundle of rank n (=the rank of E_Y) over V/Y we have a vector bundle E' over X/Y and an isomorphism

 $\beta: (E')^{"} \longrightarrow (E')^{"}$ such that

$$K^{-1}(X/Y: \mathbb{Z}/n) \longrightarrow K^{-1}(X: \mathbb{Z}/n)$$

$$\downarrow \bigcup_{d(E', E', \beta)} \longrightarrow d(E, E, \alpha)$$

Hence we have the exact sequence

$$K^{-1}(X/Y: \mathbb{Z}/n) \longrightarrow K^{-1}(X: \mathbb{Z}/n) \longrightarrow K^{-1}(Y: \mathbb{Z}/n).$$
 ///

Let A and B be Banach algebras. If there is a ring homomorphism $\varphi': A \longrightarrow B$ ($\varphi'(1) = 1$), then there exists a Banach functor

$$\varphi: \mathscr{P}(A) \longrightarrow \mathscr{P}(B)$$

$$\downarrow \bigcup_{M} \qquad \qquad \bigcup_{M \otimes_{\mathbf{A}} B}$$

Let X be a compact space, and let Y be a closed subset of X. Put

$$A(X) = \{f : X \longrightarrow A \mid f \text{ is continuous}\}\$$

then A(X) is a Banach algebra with sup norm. Since the restriction

$$A(X) \longrightarrow A(Y) \quad (f \longmapsto f \mid Y)$$

is a ring homomorphism we have a Banach functor

$$\varphi: \mathscr{P}(A(X)) \longrightarrow \mathscr{P}(A(Y))$$

$$\downarrow \bigcup$$

$$M \qquad \longmapsto M \otimes_{A(X)} A(Y).$$

We put $K(\varphi) = K(X, Y : A)$.

Theorem 3.6. With the above notations.

(i)
$$K(X,Y:R) = K_R(X,Y), K(X,Y:C) = K_C(X,Y)$$

(ii) If we define

$$K^{-1}(X,Y:A) = K(X \times B^1, X \times S^0 \cup Y \times B^1:A)$$

then we have the exact sequence of abelian groups:

$$K^{-1}(X,Y:A) \longrightarrow K^{-1}(X:A) \longrightarrow K^{-1}(Y:A)$$
,

where $B^1 = [0, 1]$ and $S^0 = \{0, 1\}$.

Proof. (i) At first, we want to prove that for each $E \in \text{Obj}(\mathscr{E}(X))$ ($\mathscr{E} = \mathscr{E}_{\mathscr{E}}$ or $\mathscr{E}_{\mathscr{C}}$) $\Gamma(X, E) \otimes_{k(X)} k(Y) \cong \Gamma(Y, E_Y)$. For each $f \in \Gamma(X, E)$ and $h \in k(Y)$ we shall put $f \otimes h = f \cdot h$. Then for each $y \in Y$

$$(f \cdot h) (y) = f(y) \cdot h(y)$$

and thus $f \otimes h = f \cdot h \in \Gamma(Y, E_Y)$. Hence $\Gamma(X, E) \otimes_{k(X)} k(Y) \subseteq \Gamma(Y, E_Y)$. Conversely, by Lemma 2.2 for each $f \in \Gamma(Y, E_Y)$ there exists $\tilde{f} \in \Gamma(X, E)$ such that $\tilde{f}|Y=f$. This implies that $\Gamma(Y, E_Y) \subseteq \Gamma(X, E) \otimes_{k(X)} k(Y)$.

Hence we have

$$\Gamma(X,E)\otimes_{k(X)} k(Y)\cong\Gamma(Y,E_Y).$$

We have to recall that

$$\mathscr{P}(A(X)) \sim \mathscr{E}(X), \quad \mathscr{P}(A(Y)) \sim \mathscr{E}(Y)$$

if A=R or C (see Property 3.4). Take an element $d(E,F,\alpha) \in K_{\perp}(X,Y)$ (k=R or C), then we have an element

$$d(\Gamma(X,E), \Gamma(X,F), \tilde{\alpha}) \in K(X,Y; k)$$

where

$$\widetilde{\alpha}: \Gamma(X,E) \otimes_{k(X)} k(Y) (\cong \Gamma(Y,E_Y)) \cong \Gamma(X,F) \otimes_{k(X)} k(Y) (\cong \Gamma(Y,F_Y))$$

is induced from the isomorphism $\alpha: E_Y \cong F_Y$.

Conversely, for each $d(E', F', \alpha) \in K(X, Y : k)$, there exist $E, F \in Obj(\mathscr{E}(X))$ such that

$$\Gamma(X,E)=E', \quad \Gamma(X,F)=F', \quad \tilde{\alpha}: E_{\gamma}\cong F_{\gamma},$$

where $\tilde{\alpha}$ is induced from α such that

$$E' \otimes_{k(\mathbf{X})} k(Y) = \Gamma(X, E) \otimes_{k(\mathbf{X})} k(Y) = \Gamma(Y, E_{\mathbf{Y}}) \qquad E_{\mathbf{Y}}$$

$$\alpha \downarrow \cong \Longrightarrow_{\widetilde{\alpha}} \downarrow \cong$$

$$F' \otimes_{k(\mathbf{X})} k(Y) = \Gamma(X, F) \otimes_{k(\mathbf{X})} k(Y) = \Gamma(Y, F_{\mathbf{Y}}) \qquad F_{\mathbf{Y}}$$

Since $d(E, F, \tilde{\alpha}) \in K_{\lambda}(X, Y)$,

$$K(X,Y:k)\cong K_{\lambda}(X,Y)$$
.

(ii) We have to note that

$$K^{-1}(X:A) = K(X \times B^1, X \times S^0:A).$$

We shall prove that

$$K(X \times B^1, X \times S^0 \cup Y \times B^1 : A) \longrightarrow K(X \times B^1, X \times S^0 : A)$$

 $\longrightarrow K(Y \times B^1, Y \times S^0 : A)$

is exact. Recall that A is a Banach algebra and

$$A(X \times B^1) = \{f : X \times B^1 \longrightarrow A \mid f \text{ is continuous}\}$$

For an element $d(E, F, \alpha) \in K(X \times B^1, X \times S^0 : A) = K^{-1}(X : A)$ we assume that

$$0 = d(E \otimes_{A(X \times B^1)} A(Y \times B^1), F \otimes_{A(X \times B^1)} A(Y \times B^1), \alpha | Y \times S^0) = K(Y \times B^1, Y \times S^0 : A)$$

where

$$\alpha|Y\times S^0: E\otimes_{A(X\times B^1)}A(Y\times B^1)\otimes_{A(Y\times B^1)}A(Y\times S^0)$$

= $E\otimes_{A(X\times B^1)}A(Y\times S^0)\cong F\otimes_{A(X\times B^1)}A(Y\times S^0).$

By Lemma 2.2, we have an isomorphism

$$\beta: E \otimes_{A(X \times B^1)} A(X \times S^0 \cup Y \times B^1) \cong F \otimes_{A(X \times B^1)} A(X \times S^0 \cup Y \times B^1)$$

such that

$$\beta \mid X \times S^0 = \alpha$$
,

because that $X \times S^0 | Y \times B^1$ is compact and

$$X \times S^0$$
 is closed in $X \times S^0 \cup Y \times B^1$.

Therefore

$$d(E,F,\beta) \in K^{-1}(X,Y:A)$$

such that

$$d(E, F, \beta | X \times S^0) = d(E, F, \alpha).$$

Next, for each $d(E, F, \beta) \subseteq K^{-1}(X, Y : A)$, since

$$\beta|Y\times B^1: E\otimes_{A(X\times B^1)}A(Y\times B^1)\cong F\otimes_{A(X\times B^1)}A(Y\times B^1)$$

we have the commutative diagram

$$1_{E} \bigotimes_{A(X \times B^{1})} A(Y \times B^{1}) \xrightarrow{\beta | Y \times B^{1}|} F \bigotimes_{A(X \times B^{1})} A(Y \times B^{1})$$

$$1_{E} \bigotimes_{A(X \times B^{1})} A(Y \times B^{1}) \downarrow \qquad 1_{E} \bigotimes_{A(X \times B^{1})} A(Y \times B^{1}) \downarrow (\beta | Y \times B^{1})^{-1}$$

$$E \bigotimes_{A(X \times B^{1})} A(Y \times B^{1}) \xrightarrow{E} \bigotimes_{A(X \times B^{1})} A(Y \times B^{1}), \qquad 1_{E} \bigotimes_{A(X \times B^{1})} A(Y \times B^{1})$$

and thus

$$d(E \bigotimes_{A(X \times B^1)} A(Y \times B^1), F \bigotimes_{A(X \times B^1)} A(Y \times B^1), \beta | Y \times S^0) = 0$$

in $K^{-1}(Y; A)$. ///

4. Products in K-Theory

Let X and Y be compact spaces. For the projections

$$\prod_{1}: X \times Y \longrightarrow X((x, y) \longmapsto x)$$

$$\prod_{2}: X \times Y \longrightarrow Y((x, y) \longmapsto y),$$

vector bundle E over X and a vector bundle F over Y, we define the external tensor product $E \boxtimes F$ of E and F, which is a vector bundle over $X \times Y$, by $E \boxtimes F = \prod_i^* (E) \otimes \prod_i^* (F)$. Thus for each $(x, y) \in X \times Y$ $(E \boxtimes F)_{(x, y)} = E_x \boxtimes F_y$. The correspondence $(E, F) \longrightarrow E \boxtimes F$ induces a functor $\varphi : \mathscr{E}(X) \times \mathscr{E}(Y) \longrightarrow \mathscr{E}(X \times Y)$ such that

$$\varphi(E \oplus E', F) = \varphi(E, F) \oplus \varphi(E', F), \ \varphi(E, F \oplus F') = \varphi(E, F) \oplus \varphi(E, F').$$

From this functor we can define a bilinear group homomorphism

$$\varphi_{\bullet}: K(X) \times K(Y) \longrightarrow K(X \times Y)$$

by
$$\varphi_*([E]-[E'], [F]-[F']) = [\varphi(E,F)]+[\varphi(E',F')]$$

 $-[\varphi(E,F')]-[\varphi(E',F)]$ (*₁) ([9]).

For each $x \in K(X)$ and $y \in K(Y)$ we put

$$\varphi_{\bullet}(x,y) == x \cup y$$

Sometimes φ_* is called the cup product in K-theory. The diagonal map

$$\triangle: X \longrightarrow X \times X \ (x \longmapsto (x, x))$$

defines the group homomorphism

$$\triangle^*: K(X\times X) \longrightarrow K(X).$$

Thus $\triangle^{\bullet}\varphi_{\bullet}: K(X)\times K(X)\longrightarrow K(X\times X)\longrightarrow K(X)$ is a group homomorphism. We put for $x,x'\in K(X)$

$$\triangle^*\varphi_*(x,x') = \triangle^*(x||x') = x \cdot x' = xx' \in K(X) \cdots (*_2)$$

With this operator K(X) is provided with a commutative ring structure ([2], [9]).

Lemma 4.1. For locally compact spaces X and Y there is the cup-product

$$K(X) \times K(Y) \longrightarrow K(X \times Y)$$

which satisfies the associativity and the commutativity.

Proof. Let \dot{X} and \dot{Y} be the one point compactifications of X and Y respectively. Then, we have the exact sequence of abelian groups:

$$K(\dot{X}\times\dot{Y}\times\boldsymbol{R})\longrightarrow K((\dot{X}\vee\dot{Y})\times\boldsymbol{R})\longrightarrow K(\dot{X}\times\dot{Y}-\dot{X}\vee\dot{Y})$$
$$\longrightarrow K(\dot{X})\times\dot{Y})\longrightarrow K(\dot{X}\vee\dot{Y})$$

where $\dot{X} \lor \dot{Y} = \{\infty\} \times \dot{Y} \cup \dot{X} \times \{\infty\}$ ([9]). Note that $X \times Y \approx \dot{X} \times \dot{Y} - \dot{X} \lor \dot{Y}$. Thus, we have the exact sequence

$$K(\dot{X}\times\dot{Y}\times\boldsymbol{R})\longrightarrow K((\dot{X}\vee\dot{Y})\times\boldsymbol{R})\longrightarrow K(X\times\dot{Y})$$
$$\longrightarrow K(\dot{X}\times\dot{Y})\longrightarrow K(\dot{X}\vee\dot{Y})$$

Since we can prove that

$$K(\dot{X}\times\dot{Y}\times\boldsymbol{R})\longrightarrow K((\dot{X}\vee\dot{Y})\times\boldsymbol{R})$$

is surjective ([9]), we have the exact sequence

$$0 \longrightarrow K(X \times Y) \longrightarrow K(\dot{X} \times \dot{Y}) \longrightarrow K(\dot{X} \vee \dot{Y}).$$

Moreover, since

$$K(X) = \operatorname{Ker}(K(X) \longrightarrow K(\{\infty\}))$$
 ([9]),

we have the inclusion $i: K(X) \longrightarrow K(X)$. Similarly, there is the inclusion

$$j: K(Y) \longrightarrow K(\dot{Y}).$$

Consider the following diagram:

$$K(X) \times K(Y) \xrightarrow{\theta} K(X \times Y)$$

$$i \times j \downarrow \qquad \qquad \downarrow$$

$$K(\dot{X}) \times K(\dot{Y}) \xrightarrow{\psi} K(\dot{X} \times \dot{Y})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K(\dot{X} \times \dot{Y})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K(\dot{X} \times \dot{Y})$$
(exact)

where γ is induced from the inclusions $\dot{X} \longrightarrow \dot{X} \lor \dot{Y}$ $(x \longrightarrow x \times \{\infty\})$ and $\dot{Y} \longrightarrow \dot{X} \lor \dot{Y}$ $(y \rightarrowtail \{\infty\} \times y)$. In fact, γ is injective, because of that for each $([E]-[T]) \in K(\dot{X} \lor \dot{Y})$

$$\gamma([E]-[T])=([E\mid_{\dot{\mathbf{x}}^{\times}(\mathbf{\omega})}]-[T\mid_{\dot{\mathbf{x}}^{\times}(\mathbf{\omega})}])\times([E\mid_{(\mathbf{\omega})}\circ\dot{\gamma}]-[T\mid_{(\mathbf{\omega})}\circ\dot{\gamma}]$$

and thus

$$\gamma([E]-[T])=0\Longrightarrow [E]=[T]$$
, i.e., $E\cong T$.

We shall construct the map θ in the above diagram. For $x \in K(X)$ and $y \in K(Y)$

$$i(x) \times j(y) \in K(\dot{X}) \times K(\dot{Y})$$

Thus $i(x) \cup j(y) \in K(\dot{X} \times \dot{Y})$. We want to prove that the restriction of $i(x) \cup j(y)$ to $K(\dot{X} \vee \dot{Y})$ is zero. By the definition of K(X) above $i(x)|_{\{\omega\}} = 0$. Similarly, $j(y)|_{\{\omega\}} = 0$. Therefore, we have $i(x) \cup j(y) | \dot{X} \times \{\infty\} = 0 = i(x) \cup j(y) | \{\infty\} \times \dot{Y}$

This means that the restriction of $i(x) \cup j(y)$ to $K(X \vee Y)$ is zero. From the exact sequence

$$0 \longrightarrow K(X \times Y) \stackrel{\kappa}{\longrightarrow} K(\dot{X} \times \dot{Y}) \longrightarrow K(\dot{X} \vee \dot{Y})$$

we have an element $x \cup y \in K(X \times Y)$ such that $\kappa(x \cup y) = i(x) \cup j(y)$.

We define $\theta(x,y) = x \cup y$. Since $i(x) \cup j(y) = j(y) \cup i(x)$ in $K(X \times Y)$ it is clear that $x \cup y = y \cup x$ in $K(X \times Y)$. Moreover, for another locally compact space Z, $z \in K(Z)$

and the inclusion $l: K(Z) \longrightarrow K(\dot{Z})$

since
$$(i(x) \cup j(y)) \cup l(z) = i(x) \cup (j(y) \cup l(z))$$
 ([9]).

we have also

$$(x \cup y) \cup z = x \cup (y \cup z)$$
. ///

Theorem 4.2. Let X and Y be finite CW-complexes, and let $X^{(n)}$ be the n^{th} skeleton of X. If we put

$$K_{(n)}(X) = \text{Ker } (K(X) \longrightarrow K(X^{n-1})),$$

then

$$\bigcup |K_{(n)}(X) \times K_{(p)}(Y) : K_{(n)}(X) \times K_{(p)}(Y) \longrightarrow K_{(n+p)}(X \times Y).$$

Proof. Since X and Y are finite CW-complexes, X and Y are compact. We put

the cellular decomposition of
$$X = \{e_{\lambda} : \lambda = 1, ..., m\}$$
,
the cellular decomposition of $Y = \{e'_{\lambda'} : \lambda' = 1, ..., n\}$.

Then the cellular decomposition of $X \times Y$ is $\{e_{\lambda} \times e'_{\lambda'} | \lambda = 1, ..., m \text{ and } \lambda' = 1, ..., n\}$. By our definition

$$[E] - [F] \subseteq K_{(n)}(X) \iff E \mid_{\mathbf{X}^{n-1}} \cong F \mid_{\mathbf{X}^{n-1}}$$
$$[E'] - [F'] \subseteq K_{(k)}(Y) \iff E' \mid_{\mathbf{Y}^{k-1}} \cong F' \mid_{\mathbf{Y}^{k-1}}.$$

Since

$$([E]-[F]) \cup ([E']-[F']) = [\varphi(E,E')]+[\varphi(E,F')] - \{[\varphi(E,F')]+[\varphi(F,E')]\}$$

(for notations see (*1) above), where $\varphi(E, E') = E \boxtimes E'$.

For each point $(u, v) \in X \times Y$ consider

$$[E \boxtimes E']_{(u,v)} + [F \boxtimes F']_{(u,v)} - \{[E \boxtimes F']_{(u,v)} + [F \boxtimes E']_{(u,v)}\}.$$

Taking $(u, v) \in (X \times Y)^{n+p-1}$ we have the following two cases:

- 1) $u \in e_{\lambda}$, dim $e_{\lambda} \le n-1$ and $v \in e'_{\lambda'}$, dim $e'_{\lambda'} \le n+p-1$ -dim e_{λ}
- 2) $u = e_{\lambda}$, dim $e_{\lambda} \le n + p 1 \dim e'_{\lambda'}$, and $v = e'_{\lambda'}$, dim $e'_{\lambda'} \le p 1$. In case 1):

$$\begin{array}{ll} [E \otimes E']_{(u,v)} = E_u \otimes E'_v & [F \otimes F']_{(u,v)} = F_v \otimes F'_v \\ & \parallel \rangle & \parallel \rangle \\ [F \otimes F']_{(u,v)} = F_u \otimes E'_v & [E \otimes F']_{(u,v)} = E_u \otimes F'_v . \end{array}$$

Thus, $([E]-[F]) \cup ([E']-[F']) \in K_{(n+p)}(X \times Y)$.

In case 2):

$$\begin{array}{ll} [E \otimes E']_{(u,v)} = & E_u \otimes E'_v & [F \otimes F']_{(u,v)} = & F_u \otimes F'_v \\ \| | & \| | \\ [E \otimes F']_{(u,v)} = & E_u \otimes F'_v & [F \otimes E']_{(u,v)} = & F_u \otimes E'_v \end{array}$$

Thus
$$([E]-[F]) \cup ([E']-[F']) \in K_{(n+p)}(X \times Y)$$
. ///

Let $\Pi: X \longrightarrow Y$ be a *n*-fold covering such that X and Y are locally compact (Note that X and Y are path-connected). For each finite dimensional (k)-vector bundle E over X (k=R) or C) the vector bundle $F=\Pi_*(E)$ over Y is defined as follows.

$$\prod_{\mathbf{w}} (E)_{\mathbf{v}} = F_{\mathbf{v}} = \bigoplus_{\mathbf{w} \in \mathbf{x}^{-1}(\mathbf{v})} E_{\mathbf{w}} \qquad (\mathbf{v} \in Y).$$

Let U be an open subset of Y. Then we can put

$$\Pi^{-1}(U) = V_1 \cup \ldots \cup V_n$$

where $U \approx V_i$ (i=1,...,n and \approx : homeomorphic) and $i \neq j \Longrightarrow V_i \cap V_j = \phi$. The topology of F_U is induced by the bijection

$$F_{\mathbf{v}} = E_{\mathbf{v}_1} \oplus \ldots \oplus E_{\mathbf{v}_n} \cong (E_{\mathbf{v}_1})^n$$

Theorem 4.3. With the above notations

(i) F is a well-defined vector bundle over Y

is a group homomorphism, and for $x \in K(X)$ and $y \in K(Y)$

$$\prod_{\bullet} (\prod^{\bullet} (y) \cdot x) = y \cdot \prod_{\bullet} (x)$$

(for notation $y \cdot \Pi_*(x) \operatorname{see}(*_2)$ above).

Proof. (i) It suffices to prove that the locally triviality of $\Pi_*(E) = F$. For each $v \in Y$ we shall take an open neighborhood U of v such that

$$\prod^{-1}(U) = V_1 \cup \ldots \cup V_n, \quad E_{V_i} = V_i \times k^n (i = 1, \ldots, n)$$

(k=R or C), where $i\neq j \Longrightarrow V_i \cap V_j = \phi$ and $U \approx V_i$ $(i=1,\ldots,n)$.

By our definition above

$$\prod_{\bullet} (E)_{v} = F_{v} \cong U \times (k^{n})^{n} = U \times k^{nn}.$$

(ii) Note that for locally compact spaces X and Y we have defined the cup-product

$$K(X) \times K(Y) \longrightarrow K(X \times Y)$$

by Lemma 4.1. Since $[E_1]$, $[E_2] = K(X) \Longrightarrow [E_1] + [E_2] = [E_1 \oplus E_2]$, we have the following: For each $v \in Y$

$$\Pi_{*}(E_{1} \oplus E_{2})_{v} = \bigoplus_{u \in \pi^{-1}(v)} (E_{1} \oplus E_{2})_{u}$$

$$= \bigoplus_{u \in \pi^{-1}(v)} ((E_{1})_{u} \oplus (E_{2})_{u})$$

$$= (\bigoplus_{u \in \pi^{-1}(v)} (E_{1})_{u}) \oplus (\bigoplus_{u \in \pi^{-1}(v)} (E_{2})_{u})$$

$$= \Pi_{*}(E_{1})_{v} \oplus \Pi_{*}(E_{2})_{v}$$

$$= (\Pi_{*}(E_{1}) \oplus \Pi_{*}(E_{2}))_{v}.$$

Hence

$$\Pi_{\bullet}([E_1 \oplus E_2] = \Pi_{\bullet}([E_1]) + \Pi_{\bullet}(E_2]).$$

That is, Π_* is a group homomorphism.

To prove that $\Pi_*(\Pi^*(y) \cdot x) = y \cdot \Pi_*(x)$ we shall prove that for each $v \in Y$

$$(\Pi_*(\Pi^*(y)\cdot x))_v = (y\cdot \Pi_*(x))_v.$$

By our definition,

$$(\prod_{w}(\prod^{*}(y)\cdot x))_{y} = \bigoplus_{u \in x^{-1}(v)} (\prod^{*}(y)\cdot x)_{u}$$
$$= \bigoplus_{u \in x^{-1}(v)} y_{v} \otimes x_{u}.$$

where we have to note that $\Pi_*(y)_u = y_v$ ($\Pi(u) = v$), and

$$(y \cdot \prod_{\mathbf{w}}(x))_{v} = y_{v} \otimes \prod_{\mathbf{w}}(x)_{v} = y_{v} \otimes (\bigoplus_{\mathbf{u} \in \mathbf{x}^{-1}(v)} x_{\mathbf{u}})$$
$$= \bigoplus_{\mathbf{u} \in \mathbf{x}^{-1}(v)} y_{v} \otimes x_{\mathbf{u}}.$$

Hence
$$\Pi_{+}(\Pi^{+}(y) \cdot x) = y \cdot \Pi_{+}(x)$$
. ///

Let $\Pi: X \longrightarrow Y$ be a principal covering with finite group G, i.e., $X/G \approx Y$ and G acts freely on X.

Proposition 4.4. Under the above circumstances we also assume that X and Y are locally compact.

Then for each $x \in K(X)$

$$(\Pi^* \cdot \Pi_*) (x) = \sum_{g \in G} \rho(g)^*(x)$$

where $\rho(g)^*: K(X) \longrightarrow K(X)$ is the automorphism of K(X) induced by the action of $g \in G$.

Proof. For each $u \in X$ we have to note that

$$^{\mathbf{v}}g \in G \quad \mathbf{\Pi}\left(g\left(u\right)\right) = \mathbf{\Pi}\left(u\right)$$

Thus, by our definition

$$vv \in Y \quad (\prod_{\bullet}(x))_v = \sum_{\sigma \in G} x_{\sigma(u)}$$

Thus, if $\Pi(u) = v$ then

$$(\prod^*(\prod_*(x)))_u = (\prod_*(x))_v = \sum_{\ell \in G} x_{\ell(u)}.$$

On the other hand, for $\rho(g): X \longrightarrow X(u \longmapsto \rho(g)(u) = g(u))$, which is the action of G on X,

$$\left(\sum_{g\in G} \rho^*(g) (x)\right)_u = \bigoplus_{g\in G} x_{g(u)} = \sum_{g\in G} x_{g(u)}$$

and thus for each $u \in X$

$$(\sum_{g \in G} \rho^*(g) (x))_u = (\prod^* \cdot \prod_* (x))_u.$$
 ///

References

- [1] J.F. Adams: Compact Lie groups, Benjamin (1969).
- [2] M.F. Atiyah: K-theory, Benjamin (1964).
- [3] M.F. Atiyah: Bott periodicity and the index of elliptic Operators, Quart. J. Math. Oxford 74, pp. 113~140(1968).
- [4] H. Bass: Algebraic K-theory, Benjamin (1968).
- [5] J. Dupont: K-theory, Aarhus, Danemark, Publ. of the Mathematisk Institut (1968).

- [6] L. Hodgkin: On the K-theory of Lie groups, Topology 6, pp. 1~36 (1967).
- [7] D. Husemoller: Fibre Bundles, springer-Verlag (1975).
- [8] M. Karoubi: Espaces classifiants en K-theorie, Tran. Amer. Math. Soc. 14, pp. 74~115 (1970).
- [9] M. Karoubi: K-theory (An introduction), Springer-Verlag 91978).
- [10] K. Lee: Foundation of Topology, Vol. 2, Hakmoon-sa (1984).
- [11] J. Milnor: Introduction to Algebraic K-theory, Princeton University Press (1971).
- [12] J.R. Munkers: Topology, Prentice-Hall, Inc. (1975).
- [13] G. Segal: Equivariant K-theory, I.H.E.S. 34, pp. 129 \sim 151 (1968).
- [14] R. Wood: Banach algebras and Borr periodicity, Topology 4, pp. 371~389 (1966).