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1. Introduction

One of the most interesting things in transformation group (X,G,®) is the existence
of slices which is a nice local property of the ‘space X.

Gleason ([5]) showed that there exists a local cross section (which is closely related
notion to slice) for the orbit map X— X/G if X is completely regular G-space with
only one orbit type and G is a compact Lie group.

Koszul ([7]) proved the existence of slices under a differentiable action without the
restriction on the orbit type.

Montgomery and Yang ([10]) extended it to a non-differentiable action. Some
useful generalizations were given by Mostow ([12]) who proved it with the condition
completely regular G-space X where G is compact Lie group. And Palais ([13])
generalized Mostow's theorem to a non-compact Lie group space which is called 5 Cartan
space.

The purpose of this paper is to prove Theorem 2.7 which is an application of the
Mostow’s theorem and to generalize it to the case of non-compact Lie group space by
using the Palais’ theorem (Corollarly 3.9). Also we are looking for some general
conditions for which an orbit map is a fibration (Proposition 2.4, Theorem 3.8,
Theorem 4. 3).

In more details, in §1, we write down the general notations which will be used
in the following sections. In §2, we sketch the: proof of the Mostow’s theorem for
the existence of slice and prove Theorem 2.7. In §3, we sketch the proof of the
Palais’ theorem and use it to generalize Theorem 2.7 and Proposition 2.4. In §4, we

review the examples which were given by King to show that there is a slice for non
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Cartan G-space and we get a generalized conditions for the fibration of the orbit map
w: X— X/G of a G-space X (Theorem. 4.3, Corollary 4.4).

Throughout this paper G will denote a topological group with identity e and H will
denote a closed subgroup of G. By a G-space X we mean a left transformation group
(X,G,®) where X is a Hausdorff space and & is an action on X. If X isa G-space,
for each (g,%)=GX X, @(g,x) will be denoted by gx. For each point x of a G-space
X Gx={g=G|gx=x) is the isotropy group of x and G{(x)=/{gx|g=G} is the G-orbit
of xe=X. If for each x&=X Gx=e, then the action is called free. If X is a G-space
and K is a subgroup of G

XK:{xc"‘:Xlkxzx for all k=K}.

is the set of points fixed by K. For a G-space X and for a subset ACX, G(A)=
{galg=G, ac=A). The orbit space of a G-space X will be denoted by X/G which
has the quotient topology under the orbit map z: X——X/G.  An equivariant map
between two G-spaces X and Y is a map  f: X——Y satisfying f(gx)=gf(x) for
each g=G and x&X. An equivariant map f:X——Y which is also a homeomorphism

is called an equivalent map.

2. Applications of slice theorem under
compact Lie group action

Definition 2.1. A subset S of a G-space X will be called an H-kernel (over
7(8)) if

(1) S is closed in GS

(2) HS=S8

(3) (&HNS+¢ & gE=H
An H-kernel S in X will be called an H-slice in X if GS is open.- By a slice at
xe=X we mean a Ga-slice in X which contains x. If there is a slice for each point of
a G-space X we say that there exists a slice in X.

Let A be an H-space. Then the twisted product Gx HA is the fiber bundle with
fiber A over G/H associated to the principal H-bundle G—-G/H ([3]).

Proposition 2.2. Let y=SCZX. Then the following are equivalent.
(@) 1) Gy, S=S.
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(2 The map ¢:Gx G;S-——»X

given by ¢([g,5])=gs is a G-equivalent map, onto an open neighborhood of
G({») in X.
(b) S is a slice at ».

{c) G(S) is an open nbd of G(y) and there is an equivariant retraction
J:G(S)——G(y)

such thatf/-!(y)=S.

Proof. (a)——>(b) It's enough to show that (3) of Definition 2.1 is satisfied.
Let gS[1S+#¢, then gs=5,=S for some s,s;S.

Since s=g¢([e,s]) and s;=0((e,s:]), gs=¢ o(Le,sDy=¢(Lg,sD)
si=¢([e,s:])
Thus [g,s]=[e,s;] and so there exists Ac=G, such that gh™'=e, hs=s,. Therefore
g=he=Gy,.
(b)==>(e)
(©)==>(a)
Now let G be a compact Lie group. If X is a differentiable manifold and the G-action
on X is differentiable, then there exists a slice in X ([7] [10]).

} See ([31)-

We can generalize this to a non-differentiable actions as the following.

Proposition 2.3. Let G be a compact Lie group and let X be a completely regular
G-space. Then there exists a slice in X.
Proof. Let x=X. Since G is a comact Lie group there is an orthogonal represen—

tation p:G—0(#n) and a point v,&=R"(=Euclidean n-space) with G,,=G,,=H, where
G-action on R is the p(G) action ([37).

So the composition ¢:G(x,)— G/Gx,=G/Gv,— G(v,) is an equivalent map. (Note
that the natural map «:G/Gx,—— G(x,) (gGx,~—— gx,) is equivalent hLecause G/Gx,
is compact).

Since G(x,) is compact and X is completely regular, by the Tietze~Gleason theorem

([21,014],[5]) there is an equivariant extension
¢: X——R"

of 9. Since the O(x) action on R" is differentiable there exists a slice at »,. By

Proposition 2.2 there is an equivariant retraction
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f:GU)—G(v,)

such that f i(»,)=U.
Put ¢"YU)=S8. Then G¢ Y U)=¢ *(GU) is open in Xyand the composition

s 4wy L cwy LG
gs—p(gs) =g (s)—gv,~—— gx,

p=¢ Y fo¢h is an equivariant retraction, where ¢ and f are the restrictions on the

above domains of them respectively.

Also
772y =(0 e Fep) ! (5,)
=(¢ o f o) (x,)
=(™ e 1) (v,)
=¢ W (U)=8.

So S is a slice at x, by (¢) of Proposition 2.2.
If Y is a G-orbit, type (¥) will denote its equivalence class under equivalent map.

So if H is conjugate to the igotropy group Gx at a point x of a G-space X, then it is

clearly

type (G(x))=type (G/G,)=type (G/H).

For a G-space X we put type (G, X)={type (G(x))|xe=X}. And we say that X has
Itype (G, X)| orbit type if it is finite.

Proposition 2.4. Suppose X is a completely regular G-space, G a compact Lie group.
Let X have only one orbit type G/H. Then the orbit map z: X—- X /G is the projection
in a fiber bundle with fiber G/H and structure group N(H)/H, where N(H) is the

normalizer of H in G.
Proof. Let x} =G(x,)=X/G(x,&=X). By Proposition 2.3 there exists a slice S at

%,. By Proposition 2.2 there is an equivalent embedding

ga:GxG”Sw-—»X

such that Imp=GS is an open neighborhood of G(x,) in X.
Since Gx, is conjugate to H there is a G-equivalent map
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‘«/;:GxHA~—»Gx G,,,S'

where A is homeomorphic to S and the H action on A is the pull-back action from
Gx, action on S by the conjugation.

Since GE e, aszac:H (ac=A) and GE e, d] is conjugate to H, Ha=H (Note that

A— G X HA(ah'—»Ee,a]) is an H-embedding and G is compact). Thus H acts trivially
on A. So Gx HA:_;G/H x A (equivalent).

Also wo know that
AwA/Hz(GxHA)/Gm(GxG S)/Gm=GS/G.
Identify A with its homeomerphic image GS/G, then we have a coordinate chart

04 G/HX AL sz 1(A)=GS

N /
~ e
N

A
over A=xX.
Let ¢3:G/H x B—7"1(B) be a coordinate chart over 8=y} &X/G. If A[\B+#¢,
¢3'o@a:G/HX (A(1B)— G/H X (A[1B)
AN e
ANB

gives a map 6: A[|B—sHomeo G(G/H). Since G is compact Homeo G(G/H)~N(H)/H
(£3n.

A toral group is a compact, connected, abelian Lie group. Since every connected
abelian Lie group is isomorphic to T*x R"™* for some #,k (where T is the circle group
and R is the real group), toral group is a product of circle groups except for the
trivial torus. A maximal torus TCG is a torus such that if TCHCG and H is torus
then T'=H. If T is 2 maximal torus of H, N(T) will denote the normalizer of T in

G. The following result is well known.

Proposition 2.5. Any two maximal tori of a compact Lie group are conjugate

(C11.08D.

Proposition 2.6. Let G be a compact Lie group and let 7' be a maximal torus of H.
Then (G/H)T=N(T)/HNN(T).
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Proof. Let gHe.-':(G/H)T and so TgH=gH. Then g 'TgH and g™ Tg is also

a maximal torus of H. By Proposition 2.5 there exists 4#6H such that
Y g ' Tgh=T,

Since 27 (g7'Tg)h=(gh)™ T(gh), ghe=N(T). Thus g=N(T)H and gH=N(T)H/H.
Conversely, if nHeEN(TYH/H(n=N(T)), then TnH =nTH=nH and so nHEE(G/H)T.
Therefore we proved that

(G/H)T=N(TYH/H=N(T)/HN(T).

Theorem 2.7. Let X be a completely regular G-space, G a compact Lie group and
let X have only one orbit type G/H. Let T be a maximal torus of H. Then

(1) Gx\XT— X ([g,41—£%) is the projection of a fiber bundle with fiber
H/N\H, where N=N(T).

(2) The cannonical map
w:XT/N— x/G

is a homeomorphism.
Proof. (1) Let x&X and let S be a slice at x. Since Gx is conjugate to H, as in

the proof of Proposition 2.4, there is an equivarient embedding

7: G/HXA—> X (A is homeomorphic to S)

such that Im »=GS. Put
. T .,
PiGx NX X.
‘Then

PHEH =G ((GHT)
=G x N ((G/Hx AT
=G x((G/H)Tx A) (T is trivial on A4)
=(Gx(6/MT) x4
g(GxN(N/HﬂN))xA (by Prop. 2.6)
=(G/HNN)xA

Since ¢:G/H{IN—->G/H is a fiber bundle with fiber H/H[\N, there exists a
neighborhood U=H such that
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H/HNxU=q ()
((G/H(\N) x A5 G/H x A2 5 X).

Let V=x*|€% x*. Then

PIVS)Y=((H/H(NNYxU)x A
=(H/H[IN)X(UxA)
=(H/H[IN)xVS.

(2) u is the map defined by p#(N(x))=G(x) for each re=xT.
for each [g,2]&=Gx NXT,

zp(Lg, 2D =n(gx)=G(x)

and so we have the following commutative diagram.

Gx NXT—-—E—«»,X

/a |=

xT/N—£_ 5x/G

Since 7 and p are surjective, u is surjective. Let x, y&XT and let G(x)=G(»). Then
y=gx for some ge=G. Since x, yEXT, TG, and T gG,.g7. Since T is a maximal
torus of H and Gx is conjugate to H, T and g 'Tg are maximal torus of Gx. As in
the proof of Proposition 2.6, there exists a&=Gx such that gac=N. Let ga=n=N. then
g=nat! and N(»)=N(gx)=N(na'x)=N(nx)=N(x). Thus # is injective.

To show that x# is a homeomorphism, it is enough to show that x« is a closed map.
Since G is compact, x is a closed map. So it’s enough to prove that p is a closed

map. By the following commutative diagram

exxT—2 ,x

NOp
\G xN‘iT

it suffices to show that @ is a closed map.
Since X7 is clearly closed in X, the closedness of ¢ follows from the following

Lemma.
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Lemma 2.8. If ¢:Gx X— X is an action of a compact group G on X, then & is
a closed map ([3]).

3. Palais’ generalization and its application.

Now let G be a locally compact group with identity e. Let ((U,V))={g=G|gU(
V+#¢) where U and V are subsets of a G-space X.

Definition. 8.1 A G-space X is a Cartan G-space if for each x&=X there exists a
neighborhood Uzx such that C/ ((U,U)) is compact in G, where C!/ means closure
in G.

Proposition 3.2. If X is a Cartan G-space then each orbit of X is closed in X and
each isotropy group of X is compact.

Proof. Let x=X and let U=x be a neighborhood such that C! ((U/,U)) is compact.
Since Gx is closed in G and GxC((U,U)), Gx is compact. Let ye=CIGx and choose
V=yv so that C/ ((V,V)) is compact. Let {g.x} be s net in V converging to y. Fixing
B, (g.£51) (g8x) =g.x. Thus g.g7'((V,V))CI((V,V)) and so we can assume that

{g.} converges to a point g=C. Therefore y=lim g.x=gx&Gx and so Gx is closed.

Proposition 3:3. If X is a Cartan G-space and x&=X then the map a:G/G.— G(x)

(gGxr—gx) is an equivalent.

Proof. Consider the following commutative disgram.

G
VRN
B/ N7
e N
G/Gx—25G(x)

So it is enough to show that 7 is open, where 8 is the projection and 7(g)=gx for
each g=G. It suffices to show that if K is a neighborhood of ¢ in G, then K(x) is
a neighborhood of x in G(x). If K(x) is not a neighborhood of x, then there is a net
{g.}CG such that g,x&K(x) and g,x—-x. Since g.»<&K if and only if g.&KGx,
it follows that g, KGx.

Since KGx is a neighborhood of Gx, no subset of {g,} can converge to an element

of Gx. Let U be a neighborhood of x such that C! ((U,U)) is compact. Since g.x is
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eventually in U/, by passing to a subnet we can suppose that {g.}T((U.U)) and so
again by passing to a subnet we can suppose that g,~—g. But then gxr=limg.,x=x

and so ge=Gx a contradiction.

Definition 3.4. A G-space X is proper if each point xe€=X has a neighborhood N
such that for each »&X there exists a neighborhooed V=¥ so that CI ((N,V)) is
compact.

A Lie group is of type S if there is a slice in every proper G-space.

Proposition 3.5. Every Lie group is of type S ({131).

Proposition 3.6. Let G be a Lie group and let X be a G-space. Then the following
two conditions are equivalent.

(1) For each x<=X, Gx is compact and there is a slice at x.

(2) X is a Cartan G-space.

Proof. (1)—>(2)

Let xe=X and let S be a slice at x. Then, clearly CI ((S,S))=Gx. Since Gx is
compact, X is & Cartan G-space. Before proving (2)==>(1) we have to prove the

following Lemma.

Lemma 3.7. Let U be a neighborhood of x in X such that C! ((U,U)) is compact.
Then for each 7,de=G, C! ((yU, dU)) is compact.

Proof. g=((yU, dU))<=g(rU)[18U+¢
E8(81grUNU)#¢
< tgre(U,U))
geEd((U, Uy

Thus C! ((yU, 8U))=Cl (U, UNrH=8 Cl (U, UNr* So CI ((rU, dU)) is
compact.

Proof of ((2)—==(1)).

Let X be a Cartan G-space and let xe=X. Then there exists a neighborhood UDx
such that CI ((U,U)) is compact. Show that GU is a proper G-space. Let gac=GU
and take gU as a neighborhood of #. Then for each’ 7#&GU the neighborhood 7w in
GU satisfies that C! ({gU, yU)) is compact by Lemma 3.7. Clearly, proper G-space
is a Cartan G-space and so G, is compact. By Proposition 8.5 there is a slice S at »

in GU. Since GU is open in X, S is also a slice at x in X.
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Theorem 3.8. Let X be a completely regular G-space such that every isotropy
group is conjugate to H and let G be a locally compact Lie group. If every subgroup
of H which is conjugate to H is equal to H then the orbit map z:X— X /G is a fiber
bundle with fiber G/H.

Proof. Let x* =G(x,)=X/G. By Proposition 3.3 G/Gx,=G(x,) and by hypothesis
G/Gx,=G/H. So - (x*)=G/H.

Also by Proposition 3.6 there is a slice $ at x,. As in the proof of Proposition 2.4
there is an equivariant embedding ¢:Gx HA*—»»X such that Im ¢=GS is an open
neighborhood of G(x,) in X. Since G[e'a]=f1aCH(aEA) and G[e,a] is conjugate to
H, by the hypothesis Ha=H. Thus H acts trivially on A and we get a chart

Pa:G/HX A~ (A)

at 2y =X/G.

Corollary 3.9. In addition to the conditions of Theorem 3.8, let 7 be a maximal
torus of H and let N=N(T), then

T
GXHX — X

is a fiber bundle with fiber H/N[H.

Proof.It's clear from the proof of Theorem 2.7 and Theorem 3.8.

The following model was given by B.Halpern and Kulkarni ([9]). We use this
model as an example that a G-space which does not satisfy Cartan condition of Theorem

3.8 is not a fiber bundle,

Example 3.10. Let G=R and let X,={{x,y)&R?| — | <x<|,xy<]}

Let X=X,/~, where (x,y)~(a’,5") iff either (x, ¥)=(x,%") or (%,¥)=(—=x', —y")
and xy=1. Then vertical unit vector field on X, induces a vector field on X and hence
a flow ¢, which is defined for all /&R and so we have an R-action on X.

Take a neighborhood [ (0,0)]J&=UcX. Then ((I/,U)) is not bounded and so CI ((U,
U)) is not compact. Since the action is free, the isotropy groups are compact. So
there is not a slice at [(0,0)]J=X. Also #:X—X/G is not a fiber bundle because
there is no chart over every neighborhood of G[(0,0)]}&X/G.
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4. On the generalization to a non-Cartan G-space

L.M King ((6]) gave the.following example which shows. the existepce of slices
for a non-Cartan G-space and generalized the existence theorem of slice to a non-Cartan

-G-gpace.

Example 4.1. Let X=KR*® be the Euclidean plane and let /# and X be the copies of
the real group R. Let G=H x K and let the G action on X be defined by (4, %) (x,)
=(x,y-+h—k) where he=H, k=K, (x,y)X.

Let (%, 3.)&X. Then for each neighborhood U(x,,5,) Girpyps=diag RXRT
((U.,U)). So this G-space is not a Cartan. But {(x’,¥,)|x'<R} is clearly a slice at
(%0, ¥0)-

A subtransformation group (X, H .QH) of a transformation group (X,.G,®) is the
H-space whose action ¢ H is the restriction of & to H.

King also gave the following example to show that there exists a slice in a subtran-

sformation group but there is no slice in the transformation group.

Example 4.2. Under the same X and G as in Example 4,1, define the G-action on
X as follows.

For each (4, k)&=G and (x,y)eX define (b, k) (x,y)=(x,y—h—~kx). Then, for
o ¥ )EX, G(%,,3,)={(kx,, k) | ke=K} and so a slice S should contain a strip contai-
ning (%,,y.). But it is not a slice. But clearly subtransformation groups (X,H) and
(X, K) each has a slice in X. So he found out necessary and sufficient conditions for
the existence of a slice in a subtransformation group to imply the existence of a slice
in the transformation group.

One thing we knew is that the fibration of an orbit map is closely related to the
existence of slices. From the proofs of Proposition 2.4 and Therem 3.8 we have the

following generalized throrem for the fibration of an orbit map.

Theoremq. 3 Let X be a G-space such that each isotropy group is conjugate to /
and for each x€=X let G/Gxz==G(x). Suppose that each isotropy group of H which is
conjugate to A is H itself. Then if there is a slice in X the orbit map 7:X— X/G
is a fiber bundle with fiber G/H and sturcture group Homeo G(G/H).

Corollary 4.4. Let X be a G-space and let the action be free. If there is a slice in
X then the orbit map z: X X/G is a fiber bundle with fiber G.
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