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1. Introduction

Thz concapts of a module of ganeralized fractions were formulated by R.Y. Sharp
and H. Zakeri and introduced in their paper {19) in 1982. Since then many mathem-
aticians have studied the relations of Cousin Complexes [14), Lozal Cohomology (212,
Krull Dimension (4], Balanced Big Cohen~Macaulay Module (20] with modules of
generalized fractions. Especially, R.Y. Sharp and H. Zakeri proved the following:

If A is a Nostherian ring, then

Uiid=z @D (UitA)
pe=Spec(A)
ht(p)=i—1
for soms triangular subsets U,. In this papar,-we will prove that if A is a Gorenstein

local ring then

Uiid= @  E(A/MD).
pe=Spec(4)
ht(p)=i—1

The dstailed contents of this paper can be described as follows:

In section 2, we will define a module of generalized fractions and discuss some
known proparties of modules of generalized fractions which. will be used later in this
paper. ‘

In section 3, we will describe the properties of poor A-sequence.

In section 4, which is the main part of this paper, we will prove the main Theorem
4.7 and its corollaries 4.8 and 4.9, noticing that every system of paramszters over a

Gorenstein local ring A is a poor A-sequence,
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2. Modules of Generalized Fractions.

Throughout this paper, /A denotes a commutative ring with identity and M denotes
an A-module and D,(A) denotes the set of all z#x#n lower triangular matrices with
entries in A. For //&D,(A) we shall use |H | to denote the determinant of H, diag
(enr, #, -++, t,) will denote the diagonal matrix with diagonal elements uy, u,, -, #,.

We shall use H? to denote the transpose of a matrix /. N denotes the set of all

natural numbers.

Definition 2.1. Let A be a commutative ring and let »<=N. A subset U of
A" = AxAx--- XA is said to be a triangular subset of 4" if the following hold:
(1) U is non-empty.
(ii) Whenever (uy, uy, -, u,)U, we have (a1, 2,52, -, u,®)ye=U for all
choices of positive integers a,, a;, -, @,.
(iii) Whenever (u;, #,, -, u,)e=U and (v, v,, -+, v.)&U, there exists (w,, w,,

o, w el such that
w,E(Auy A4+ Au) [ (Ao, + Avg -+ 4 Avy)
8o that there are lower triangular matrices /, Ke=D,(A) such that
H(uyy sy oy w)7= (w1, w, -+, w)T=K (03, 03, -, 027

Example 2.2. Let A be a Noetherian ring. We adopt the convention whereby
the ideal A of A has height oo. For each r&=N, we set

Ui:{(Mhuh""ui)EAi‘kt(Aul'*‘Auz"‘r""+"Auj)2j for all j:: v:}!"’,i}-

Then U, is a triangular subset of A for each /e=N.

Proof. It is obvious that U/, is a triangular subset of A'=A. Suppose, inductively,
that U; is a triangular subset of A7 for 1<{f<4. Of course, U,%¢ since (1, 1, +-, 1)
&U,. For every prime ideal p and every a;e=N, éflu,gp if and only if ;;?Au,“r
Cpb. Hence it follows that if (uy, #s, -, #)U; then Gu,®, u®, -, u,*)e=U, also for
every a;,&=N. For (u,, #z, -, #;), (vy, vs, -, v,)=l7,, there exists (w,;, wz, -, W; 1}

e=U, . such that
{n) ()
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for 1<7<<i—1 because that (uy, #,, -, #;.;) (¥y, vz, -, v4.,) are contained in U,_;.
{~1
In the case of X, Aw,=A, if we put w;=uw; then (w,, w,, ---,w;)=U; such that

ru}

w,ez(;é:,;Au,)n(ﬁ:Av,) for j=1,2, .

=]

i-1
In the case of > Aw,s=A, set
r=}

Q= (pe Spec(A) | :‘z;i1 Aw,Cp and ht(p)=i—1).
Then we have
(z‘:Au,)n(ﬁzAv,Dggp for all peQ.
rmi rul
Since Q is finite, we have

i i
- 5™
(40)0 (35 40r) g
i i
and go there exists w.-EE( Z:Au,)ﬂ(z:Av,> such that w,&Jp.
ral r=1 peo
This implies that (w,,w,, -, w;)e=U;. Hence U; is a triangular subset of A’ for all
ie=N. ///

Example 2.3. Let A be a Noetherian local ring of dimension # with the maximal
ideal 2. It is well known that » is the smallest number of non-zero elements required
to generate an M-primary ideal {12; Chapter V. Theorem 11. A set of » elements
which generates an M-primary ideal is called “a system of parameters of A”. In this

-case, the set
U= {(aty, 22y~ h5) =A™ ey, 4, +-, 4, i8 & System of paramcters of A}

is a triangular subset of A".

4 . . s
Proof. Since dim A==ht(M):-n, there exist u,, uy, -, 1, such that Az (}:lAu,)
rm
=-n, This implies that (u,,u,, -, 2,)U. It is obvious that if (w,u,, -, #.)=U then
Gt s, 1%, - w0, %)=l for every positive integers @y, a,, -, a, because that Z_ Aw, and
a1

n
22 Au,% have the same radical. Let (wy, wg, 0, 2,)EU, (01,00, 0,060 and wy=10,.

ret
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Then dim(A/Aw)>n—1.
Assume that dim(A/Aw;)=#». There are prime ideals po,p,, -+, p, such that

Aw  CpeCp, -,

So Awu,Cp, or Av,Cpe, and thus dim(A/Awu;)=n or dim(A/Av,)=n. But this is a
contradiction. Hence dim(A/Aw,)=n—1, and so w,=u,, is a subset of a system of
parameters of A.

Suppose that, for 1<(f<(», we have a subset {w,,wy, -, w;} of a system of param-

eters of A such that
J J
w,ez( {_;Au,) 0 (z:.: Av,)
for all j=1,2,--,i. Set
Q= {peSpec(A) | 3 Aw,Sp and dim(A4/p) =n—i).
Then it follows from (12; Chapter V. Theorem 2] that
i1 i+1
(Zaw)n (£ 40 )0
r=i ra]
for all pe=Q. Hence
i+l i+1
(554 0 (55 40 )
so there exists wmez(gflu,) ﬂ(f;l‘Av,) such that w,,,&|Jp.
T=1 ray peg

Since iEAw,g g_l,’l‘Aw,, we have
=1 rs=
i+l i
n—(i-1)<<dim (A/ZL: Aw,)gdim (A/;;Aw,) =i
by (12; Chapter N. Theorem 2). On the other hand, dim (A/ %Aw,} <m—1{ because

that w,,,6p for all p==Q. Thus dim (A/:f:f_}Aw,) =n-—{—1. Therefore, by (12; Ch-
apter V. Theorem 2), {w,, wy, -, w;;) is a subset of a system of parameters of A.

Therefore U is a triangular subset of A", /77

Example 2.4. Let U, be a triangular subset of A". Then it is easily proved that
Unpr= {Qty, 2, -, 10, 1)E A (g, g, o un)e=UL) is a triangular subset of A™"!, and
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that, for i<m, the set

U= {{4y, 23, ,%;)EA"| there exist u,,y, %3, -, %, Such that

(uh ety Uiy Upggy ey u,,)EEU,,}
is also a triangular subset of Af, We call U, the restriction of U, to A'.
In (19), R.Y. Sharp and H. Zakeri proved the following proposition.

Proposition 2.5. (i) Let U be a triangular subset of A", and let (w2, -, u,)
U, (v, vy, 0,00 and suppose that

H(uh Ugy "y un)T:v: (vh Ugy 'y vu)T

for some He=D,(A). Then
|H quefzil:Avr

for all i=1,2,,#.
(ii) Let (uy,#ta -, un)&EU, (01,0s, -, 0,)65U and suppose that there exist H, Ke
D,(A) such that

II(“I’ Hay ey uu)T: (vlo Vay 'ttty v”)T: K(uh Uy, tty ”n)T'

Then

Using Proposition 2.5, we can show the following proposition(19].

Proposition 2.6. Let M be an A-module and let U be a triangular subset of A”.
Consider the relation ~ on MxU defined as follows;

For m,ne=M, and (uy, uz, -, u,), (0,05, 006U, we define
(m, (g, 22, -y #0x) )~ (B, (03,03, 7, 0,))
when there exist (w;,ws, -, w,)e=U and H, Ke=D,(A) such that
H(”l’ "2’.,.,;"‘)1': (wb u'z,"',w,,)r* K(D],Ug,“',v,,)r
and (1 [~ |K|me(E Aw,)M.

Then ~ is an equivalence relation on ML,

e 65 —
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Definition 2.7. With the above notations, dsfine th: formal symbol PR L —
(”h ”2: "'nun)

to be the equivalencs class of ~ containing (m, (ey, %, -+, 1,)). Lat U "M denote the

set of all equivalence classes of ~.

R.Y. Sharp and H. Zakeri have proved that thz sot I7-"Af has an 4-module stru-

cture under the following operations;

m _ ” 1 m SN
(f/h”z’-"':”n) * (”J,i’zy"'-i’n) ‘ (wl:u}h "'ywn)

(1)

where Fl(ri;, ttq, oo, t0)7 = (0,100, -+, 10,07 = K {0, 0, - 2.) T

where gz 4

(i a- m o am
Qg My oytty) (M 22y, 000 "

This module U-"M is called a module of gensralized {ractions o AT 150

Definition 2.8. A triangular subsazt /" of A" is said to b2 expand:d if whenever
(g 24z, -+, 00)E=0, it is th2 casz that (wy, iy, ., 1,1}’ for all ¢ with 0<i<n.
For a triangular subset {7 of A", let {F be th> set of all sequences (vy,,, -, v,)EA"

for which there exist 077/ m and (uy, s, *+-, 2, )= guch thai

1”" for j==1,2,-,4.
1= ] for jmidl, e, n

Then we can easily show that [ is a triangular subset of A”. This set U is called

the expansion of U.

Proposition 2.9. Let U bz an expanded triangular subset of A". Then, for meM
and (uy,2,, -, 4,)e=U, the following hold;

R _ m
(uh Uzgy oy ”u) - (uh Ugy >ty Un_qy 1)

() in U-"M.

Gi) if me(qiﬁ/m,)M, thop— %
r=1

(uhub ) un-—lrun) ”

U m

(iii) if

—==( in U""M, then —

(“l’ Uy ttty tl,,) : (”h Upy 'y un) =0
Proof. (i) If we put I.=diag(l,1,--,1), K=diag(l, -, 1,4,)&D,(A) then
ToQuyy ity o )T (thy g, ooy 16 )T K (g, gy vy 1nagy 17

[T st — ]Klmizoe(:zi'_;;Aztf)M.

— 6 — -
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Hence the result follows.

(il) If ]u':diag(lylr'"’])y D:—diag(uh”h"'9z’n)€'EDn(‘4)) then

‘,n<”h HUgy 'y uu)T“ (“uﬂm "ty !t,,)Tf“—‘D(l, | PRSI I)T

1. Im:»“mi':”'(é..;.;} Au,) M.

Hence the sssertion holds.

(iii) There cxist (wy, wy, -+, w0,)e=U and H= (#;;)eD.(A) such that

and

Hence

]1(“1, Hyy oy un)T"':' (u’l! Way ey w”)‘l‘
n-y
| lu,,me:?(?:i}/lw..)M.

fnot n-1 w1
1 b, wam St ymes (3 Am, ) M.
raj M ra

Therefore, by (i) of Proposition 2.5,

Hence, by (ii),

and thus, by (i),

‘Therefore

Notation 2.10.

such that

a-1

Ryhtagfin 1m0 HEE ( EJAW,) M.

=y

T R o rre
et gzin e,
(u’h gyt g Winyy Wy )

haftaze g
(01y 102,y Wy, We)

0

e,y

We shall use the symbol # to denote a family of sets (U;]ic=N)

(i) U, is a triangular subset of A* for all ie=N,

(ii) whenever (uy, e, -, )60, with 1-7/6=N then (uy,us, -, 0. 0EU 1,

(iii) whenever Cuy,u,, - u,)=U; with 1777z N then (uy, i, -, 14, 1)U 41,

—67 —
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(iv) (el

(Note that if each L', is expanded, then (ii), (iii) and (iv) can be replaced by the
following single condition;

(v) for all /&=N,U, is the restriction of U/, to A%).

Given such a family# and an A-module M we can construct a complex ¥ (%, M)

of A-modules and A-homomorphisms,

e, M) 0—-M AU P UM UM U M
where
d°(m)=m/1 and d'(m/(uy, sy, -, #;))=m/(y, tz, =, 45,1},

We note that ¢ (#,M) is a complex, by (ii) of Proposition 2.9.

Lemma 2.11. In a complex € (#,M), each A-module ;M is an essential exten-
sion of Imdi-t for all /&N,

Proof. For each ——— U M, there exists #,£5A such that
(ey, 3,7, 005)

o u;m _ m
T (uay gy ) T (B e, Uiy, 1)

c=lmdi~t
by (i) and (iii) of Proposition 2.9. Therefore U, "M is an essential extension of

Imdi=t, ///

Proyogition 2.12. Let A be a Noetherian ring and p, qc=Spec(A4), and let E(A/p)
is the injective envelope of A/p. Then
(i) E(A/p) is indecomposable.

(ii) If M is an indecomposable injective A-module, then there exists a prime ideal
(iii) If 9y, then E(A/q) is the injective envelope of (A4/a)p==Ap/aAp. That is,

EA(A/Q)EEAb(Ap/qu)"

Proof. (i)Let M, and M, be non-zero submodules of £(A/p). Since A} A/p and
M.(iA/v are non-zero ideals of A/pb by definition of E(A/p), we have

0F (M TA/PY (ML [T A/R) (M NA/M N (M A/®) S ML [T M,.

This implies that E(A/p) has no direct summand.

— 68 —
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(ii) Since M+#( there exists a prime ideal p in Ass(M) (9). Since M is injective
there exists an A-homomorphism g: E(A/p)-— M satisfying the following commutative

diagram:

Ay — E(A/p)

'/
|
)

o

M

Assume that g(8)=0 where 0#b=E(A/p). Then there exists 0#a=A such that

0+#abe=A/p. Hence, by the above commutative diagram, we have
0Fab=g(ab)=ag(b)=0

which is a contradiction. Thus g is a monomorphism. Hence E(A/p) is a direct
summand of M because that E(A/p) is an injective A-module. Therefore M=E(A/p)
since M is indecomposable.

(iii) We first note that £(A/q) can be regarded as an Ag-module and £(A/q)
contains (A/q),. Hence A/qC(A/a)p=E(A/q). Since E(A/q) is the injective envelope
of A/a, it is also an essential extension of (A/q)p. For any A-module M, M is inje-
ctive as an Ap-module if and only if M is injective as an A-module. Therefore F(A/q)

is the injective envelope of (A/q)pfs_:Ap/qu. /7

3. Poor A-Sequences,

Let M be an A-module. For any subset {x,, s, -,%,J&A, the set of all Zero

divisors of M/(?E..:Ax,)M is denoted by Z(M/(ri..?/lx,)M).
Definition 3.1. Under the above situation, if
x,-%Z(M/(i}:'EAx,)]VI)
vl

for all ¢=1,2,---,n then xy,x,, -, %, is called a poor A-sequence on M. If we take A

ingsteady of M, the sequence x,,x,,-,x, is simply called & poor A-sequence.

Proposition 3.2. Let S be a multiplicative closed subset of A. If x,, %, -, %, is &
poor A-sequence on A, then x,*,x,*, .-, x,* is also a poor As-sequence on Ms, where

x;* is the image of x, under the canonical map A4--— As.
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m*=m/se=Ms and m*my/se=Ms (F=1,2,--,7-1) such that
i-1

X I e (¥5)
r=1

where s,s;&S. We multiply (%) by ss;8,--5,_; and then we gt an equation for

BN

elements of M. This yields that
3o "
x.‘EZ(M/ ( 2...'.4,\:,)‘1[).
Y=g
But this contradicts to our assumption. Hence the assertion holds. ///
Proposition 3.3. Let x,,x,,--,x. be a poor A-sequence on M. Then

x;%Z(‘M/(Ax,‘F-'- {"4}\:,‘_1 +Ax,»+1+'-'+Ax,.)M).

Proof. Suppose that there exists me&EM - (Ax;+ o +Axi g+ A%+ + Ax) M
such that

ximE(AxH—--' +Ax,‘-1<+—Ax,-+1+- +Ax,.)AM.

Then there exists a subset {myy, a1, =) Mg 1, Migr 1, M} M such that

Xym=KygMyyt o F X M R g 1T T XM

Since x,.$Z(M/(:2:_.f'Ax,)M ), we have m,.lei(‘:ﬂm:Ax,)M. Hence there exists a subset

{myg, Mag, -y Mn_y 2} &M such that

My =% Mya+XgMpy+ ot Xp My 2.

Thus

Xm=2y (Mg + X Myg) + oo F 2 (Mg b Bty ) F XXMt Ky (Mg o X1 2)

That is,
X (m—xamig) =5 (Mg + Eampy) + oo b Xy (Mg 1+ XMy 2)
. n~2
Since x,.-,@Z(M/(Zle,)M), we have

n-2
mﬂ—l lvfixamn-‘l zé(;:.,: Ax,)M.
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By repeating the similar arguments, we obtain
i:l
X (= (XgMig+ XMz oo 42400y ,,-,»+,))€5(z_..;‘Ax,) M.
e

i~1
In this case, mm(x,.nziaw‘r-x,,-,nzis—J«---+x,»+,,m,~n..iﬂ)%(z_'!:Ax,)M because that if m—
i-]
(xn772.-z+xu—1777f3+""F‘xiumsn«.'.u)e(:zll—‘lxr)]\’[ then mes(Axy+-+ A%+ Ax  + o+
-1
Ax, )M and which is a contradiction. Hence x.«EZ(M/(Z:Ax,)M), and which is a
LT

contradiction to our assumption. Therefore we have

2, EZ(M/(Ax + -+ Ax; o+ Ax 4o+ Ax) M) /)]

Lemma 3.4. Let a,%,,--,x. be a poor A-sequence on M and let 4cA. Suppose

that
abmy+ Xty + o+ K= Ay Fxgy o A Xamy,
where my,my, -, M, my My, -, m, €M, Then
mye=(Ab+ Ax,+ -+ Ax M.
Proof. We use the induction on #. Suppose that this lemma holds for #—1. Let
ADM A+ KoMy A+ o+ Xty =AMy + Xty -+ oo 2,
where m;,m;/e=M. Then since x,Z(M/(Aa+ Axy+ -+ Axa.;)M), we have
ti, —m,e=(Aa+ Axgt o+ Axn ) M.
Hence there exist m,",m,", -, m,."€=M such that
iy == amy - xgmy o X,y
Thus

AOML XMy b X Py = QIR A KBy 4 vy ()
=amy Xy e Ay Py X (@ Xy A e A K M )

=a(my + Xty ) Xy () X 1" ) i X (Mg A XaPa ")
Therefore, by the inductive hypothesis,

mye(Ab+ Axg-+oo - Ax )M, /77
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Lemma 3.5. Let v, x5, --,%, be elements of A, and suppose that x;==2b. Then the
following statcments are equivalent;

(i) a, xp+,x, and b, x,,---,%, are poor A-sequences on M,

(ii) x;, xp,+,%x, is a poor A-sequence on M.

Proof. (i)--->(ii) It is obvious that x,=ab is a poor A-sequence on M. Suppose

that
A mEE(Ax + Axy+ -+ Ax, _ OME(Ag+Ax,+ o+ Ax; )M
for 2<li<m. Say,
xme=abmy b gyt 2, ym; .y, where me=M for j=1,2,,i—1.
Since x;£Z(M/(Aa+ Axy+-+-+Ax;_ )M}, we have
M==AY+ AYp+ + X, ¥-1, Where vy, y;&&M for j=1,2,-,i—1.
Then
QXY+ XX Yot o Xy X, Vi1 = QO Kttty Xy
So, by Lemma 3.4,
%, y=(Ab+ Axy+ -+ Ax M.
Since %, EZ(M/(Ab+ Axy+ -+ Ax, M)
y=bat+xpzy+ - +%,.2;.,, where z,z2,&=M for j=1,2,,i—1.
Hence

M=a(bz+Xa2y+ -+ % 1Zi) T XY B X Vi
=abz+xy(azg+y,) + -+ 2, (@2, + ¥, VE(AK + A%yt - Ax M.

Therfore x;,x,,---,%, is a poor A-sequence on M.

(ii)—— (). It is clear that a is a poor A-sequence. Suppose that
xmE(Aa+ A%+ -+ Ax;_ )M, where 2<i<n.

Then x.bme(Ax,+ Axz+---+Ax;_ )M, and s0 bme(Ax,+ Axy+ -+ Ax,_ )M,

Hence

xjm::xlamx“l"xzmz‘f""'+xi~1’ni—-1 for some m;,mz,-“,mquM-
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50, by Lemma 3.4,
mEE (A Axy -+ Ak LML

Therefore «,x,, -+, x, is a poor A-sequence on M. ///

Corollary 3.6. Let ay,ay, , @, be arbitrary integers. Then the following statem-

ents are equivalent;
(i) the sequence x,,x;, -, x, Is a poor A-sequence on /.
(ii) the sequence x,", x,%2,---, x," is-a poor A-sequence on Af.
b

Proof. This is obvious by Lemma 3.5. ///

Lemma 3.7. Let I/ be a triangular subset of A" each element of which is a poor
A-sequence on M and S be a multiplicative closed subset of A. Let ¢: A - As

denote the canonical ring homomorphism. Then the set
L‘rs'x{(écul)! ¢(u2):"'| ¢(un))E(«45)"i(ub”?,"";un)elj)

is also a triangular subset of (As)™ each element of which is a poor As-sequence on Ms.

Proof. It is clear that if (#(w,), ¢(uy), -, P(x,))e=l's then (D)™, @(uy)™, -,
S(u,)*ye=Us for every a;e=N. Moreover, for H=(k,;)eD,(A), we put H’'—(h,;;/1)
€D, (As). Then, for ($(u), ¢(uy), -, $(u))SUs, ($()), $(25), -, d(2,))Us, there
exist H',K'ezD,(As) and (§(w,), @(ws), -, ¢$(w,))=Us such that

H(@(u1), ¢(a2), -, () = ($(w1), S(wa), -+, $(w0NT=K ($(v)), $(23), -, $(0.))7
since (uy, 5, -+, u,), (01,04, -, v,)=U. Hence Us is a triangular subset of (As)".

Next we shall prove that ¢(w,), @(u,), -, ¢(x,) is a poor As-sequence on Afs for
any (@(u,), ¢(u,), -, ¢ (u,)Y=Us. Of course, S(u)EZ(Ms). Let 1<7i<n. Assume that

luIn/s=(As@(uy) - AsPlaeg) + -+ Asd(u, ) Ms
for some m, se=Ms, Then there exist m,/s;,, ma/ss, o, %, 1/5;.,5=Ms such that
O ym /s = OQu)my /sy @ (ata) Mgy sy i oo v @l It _1/5i10
Thus we have
1 (Sy8p0-8, YmEZ(Awy+ Awy > oo 0w, )AL
Hence sisp--s,yme=( Ay 1 Ay + -+ An,_ )M since z«‘»‘fZ(Jbi/‘(ii;Au,).\I).

— 73—



14 Dae - Sig Kim

This implies that
m/se(AsP(uy) + Asd(ug) + - + Asd{n, V)M s,

Therefore ¢(u,), ¢(uy), -, ¢(u,) is a poor As-sequence on Ms. ///

Laim O’Caroll proved the following important theorem;

Theorem 3.8. Let A be a (Noetherian) ring and Let M be an A-module. With the
Notation 2.10, the complex ¥(#,M) is exact if and only if, for all /&N, each
member of U, is a poor A-sequence on Al.

Proof. See 720), or see (13) when A is Noetherian.

4. The Gorenstein Ring.

Proposition 4.1. Let U be a triangular subset of A® and S be a multiplicative closed

subset of A. Let ¢: A—— As denote the canonical ring homomorphism, and put

Us={(¢(ur), ¢(utz), -, $(sa))=(AS)" [ (14, 203, -+, u0n)EU ).

Then Us is a triangular subset of (As)”, and there is an As-isomorphism &: (U "M)s

— (U/$)""Ms which is given by

+
m/s

m -
w‘( (“n”a;"‘;“») /s >w(¢(u!)’¢(u2);""¢(un)) )

Proof. By Lemma 3.7, the set Us is a triangular subset of (As)".
It is obvious that ¥ is surjective, and so it remains to prove that ¥ is injective.

Assume

m/s

(@ Cor), p(utz), -, (1)) =)

in (Us)"Ms. Thus there exist (v;,v,, -+, 06U and Le=D,(As) such that

L(¢(Z¢l), ¢(u2)9 ) ¢(un))’r:: (¢(vl): ¢(02)y Tty ¢(va))T

and

IL lm/sE[%Ast,)]Ms.

Now there exist (w;,w,, -, w,)=U and H,KeD,(A) such that

— 74— .
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11(”1:”% '”,!(,,)T»‘(Z('“ZI,'J, ""u)n)T:":I{(”l! Doy reey vn)T""""‘

Hence

SCHY(PG), $(ata),y -, ()Y T = (f(w1), $(202), -+, (w,)) T

(5:0)

=g (K)(9(v1), $(w2), -+, G (0.)) "= UK LAGCar), §(2), -, Pluea))7.

Let D-=diag (u,,2,, -, w,) then we have, by (ii) of Proposition 2.5,

(f¢(N)e(D)| - I.O'(D)sé(K)L!)(m/a')r’:“:[§§48(¢(w,)’)]ﬂ15.

Since
SISO LIOn/HSI$DIBUO || EdAs(b(0,0) | M5
quf'(D)l[%AsqS(w,)]Ms by (i) of Proposition 2.5,
n~1
f;[?.:;l‘As(qS(w,)z)]A/Is
we have

| DY) | (/)= ToAs(p (0,1 |Ms.
It follows that
n-}
¢|DH ij( ;:_.:Aw,z)M

for some fe=S. Since

D}](Zh, Ugy <", un)T:: (u'lzy wzz’ Tty wnz)T fmm (:/:é)

we have

__tm

(”l’ Mgy ey 'M,,)

Therefore

m
SR S— e /
(”11 Uz, "',Z/{,,) /b 0. /’ /
Let A be a Noztherian ring and let M be an .4-module.
resolution over A is an injective resolution

—_ 75—

A minimal injactive
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00 4 pd A

such that, for each 720, I’ is an injective envelope of ker di{, We note that every
minimal injective resolution over a module is isomorphic because that all injective
envelopes of a module are isomorphic.

Let

0- - ,‘,Uﬂm.,]ow_({: p"”) i f{‘,.‘.

be a minimal injective resolution over . Then, for each multiplicative closed subset

S of A,
O"”‘“’AIS""”"" (10)5”""’ (Il)s [, (I‘)s bavs

is a minimal injective resolution over Als.
Since every injective module is a direct sum of indecomposable injective modules

(8], we can write I' as

I @ e IMEAY

B pe=Spec(A)

by (i) and (ii) of Proposition 2.12, where p'(p, M) is the number of copies in I’
which are isomorphic to E(A/p). Accordingly, by the above descriptions,

2P, M)=pi(pAs, Ms) where S(p={(0].
If we put /c()a‘):-A;,/pAp then it follows that
/z"(p,]ll):dim,q,, HomAp(/c(p), Mp)
for any pe=Spec(A) (10).

Lemma 4.2. Let A be a Noetherian ring and let M be an A-module. With the
above notations, we have
#(p, M)y =dim,p Extly, (s(0), Mp)=dim.p(Exty (A/p, M))p.
Proof. By replacing A,, My by A, M respectively, we may assume that 4 is a
Noetherian local ring with the maximal ideal p. Let

[ ,]W_,“,,]omf: p_f_i_l_,....ww» 1x‘,f1_:.‘.

be a minimal injective resolution over M. We have a complex

e TG e
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--~w>}lomA('§, 1i~!),.«.,1~[0m,,(”§, I‘)~»~—-—»Hom4(§, I+

where §== A/p. We have to note that
HomA(A/p, I")-":’Y"‘:’l {xE—EI‘ Ipx::::o}

because that, for each fe=Hom,(A/p,I'), the map ¢: Hom,(A/p, I')——-T" defined
by é(f)=f(1-+p) is isomorphic. Let x&T"*, Then Ax=® is a submodule of J¢. Hence

Ax(d(I*"Y)5 {0} since /' is an essential extension of d4(I'-'), and thus it follows
from the fact Ax=® that xe=d (1Y), This yields that T°Cd(I'*), and so d(T)=0.

In consequence,

Exti, (}, M) =T s<Hom (&, I').

Therefore the result follows from the above descriptions. ///

Definition 4.3. (10] Let (A,sm,%) be a Noetherian local ring of dimension 2,
where 9 is the maximal ideal and E«:A/SH?. Then A is called a Gorenstein local
ring if it satisfies the following conditions;

(i) inj dimA<oe.

(ii) inj dimA=n.

(iii) Extiy (R, A)=0 if i#n, and Ext, (R, )= if i=n.

(iv) A is a Cohen-Macaulay ring and Ext” (%, A)=®.

Lemma 4.4. Let A be a Gorenstein local ring of dimension #. Then Ay is a
Gorenstein local ring for every prime ideal p of 4.
Proof. Since A is a Gorenstein local ring of dimension », we have an injective

resolution over A:

Hence the sequence
0 _,_..N,Ap, N (Io)pw., > ([")p ey < an ey (]")ph.,,,()
is an injective resolution over Ay, and so inj dim Ap~Teo. /77

Lemma 4.5. Let A be a Gorenstein local ring. If

— 7
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is a minimal injective resolution over A, then

= @ E(A/y).
pe=Spec(A)
ht(p) =1

That is,
#i(p, A)=4;, ReCp)s

where 8 is a kronecker delta.

Proof. If ht(p)=i, then, by Definition 4.3 and Lemma 4.4,
Extly, (s(p), Ap) =#(p),
where /c(p)r-Ap/pAp. Hence, by Lemma 4.2,
#(p, Ay=p(pAp, Ap)=1.
On the other hand, if q is a prime ideal with hf(q) ¢ then
Extj‘lq(/c(q), Aq)=0, where £(q)=4Aq/9Aq.
Hence (g, A)=p'(qAda, Aq)=0. Therefore

I's & #oDEA/M= @& EA/MW. /1]
pe=Spec(A) gzetz(gg)eq(A)
) by 4

It is well known that if (A4,M) is a Cohen-Macaulay local ring, the following
statements are equivalent [9):

(i) the sequence x,x,,-:-,x, in MM is a poor A-sequence.
(ii) ht (;“'_:.‘Ax,):z’ for every 1<i<r.
t=]

(iii) {x;,x3,---,x,} is & subset of a system of parameters of A.
Let A be a Gorenstein local ring of dimension # and we put
Vo= (%, %gy -+, %) A" 21, g, -+, % i8S a system of parameters of A}.

Then V, is a triangular subset of A" each element of which is a poor .A-sequence by
Example 2.3 because every Gorenstein local ring is Cohen-Macaulay. In this case, we

define a family ¥ ={V,}..y as follows;
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@ If ¢=n, V, is an expansion of V..
2) If i<Im, V', is a restriction of V, to A’
& If i>m, Ve {5, %2y 00, 2)S AN (&), Ky, 4,06V, and x;=1 for all j=n-+1,
w2, e, i)
Then the family ¥ = {V,};ey satisfies the conditions (i)~(iv) of Notation 2.10, and
80 we may form the complex ¢ (¥, A). Futhermore, for any (x,, %, -, %)V,

Fl
lzi(},_;llz'l.v,);::j for every 1:77<i.

K.Y, Sharp and /. Zakeri proved the following theorem (20).
Theorem 4.6. Let A be a Noetherian ring and let # be a family (U;);ey of tria-

ngular subsets in Example 2.2. Then

UilA= & (UitA)y.
p=Spec(A)
ht(p)=i—1

We shall now prove our main theorem.
Theorem 4.7. Let A be a Gorenstein local ring of dimension # and let ¥ be a family

(V)iey of the above-mentioned triangular subsets. Then
(VitA)py=E(A/p)

for every pe=Spec(A) with ht(p)=i—1. In particular,
(VitA)p=E(A/P) =4y

for every pe=Spec(A4) with At(p)=0.

Proof. We shall prove the assertions by induction on A{(p)=7¢—1.

If p is a prime ideal of 4 with Ai#(p)=0, then A, is a Gorenstein local ring of
dimension zero by Lemma 4.4. Hence, by (ii) of Definition 4.3, we have a minimal

injective resolution over Ay:
0 +dy — E(Ap)-—20
Thus it follows from Lemma 4.5 and (iii) of Proposition 2.12 that
Ap=E(Ap =E(Ap/p A =E(A/P).

On the other hand, we obtain
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by Proposition 4.1, Lemma 3.7 and Theorem 4.6. So the sequence
00— Ay (Vi'A)p—>0
is exact by Theorem 3.8. Therefore
E(A/p)=Ap=(V'A4)y.
Suppose that the theorem has been proved for kf(p)=0,1,-,i—2. Let At(p)=i—1.

Since there are no prime ideals of Ay with height>{, we have, for all j>i--1,

(Vs);j'Ap= @ (V)i Aplg4p=0
g quEESpec(A;,) p-adp
ht(qAp) = j—

by Lemma 3.7 and Theorem 4.6. Hence we have an exact sequence

Ow’Ap-—«ﬂ(Vl JA)p«—-)(ngA)p ey A (V"'*'l‘f{)p‘__)(v A)p“"“”’o ( )

by Theorem 3.8. Moreover, by Lemma 2.11, (V;"A)p is an essential extension of Im
di-' for §=1,2,+,4.
By Proposition 4.1, Lemma 3.7, Theorem 4.6 and the inductive hypothesis we

obtain the following:

VIEINAE O (VA= @ Ehy/ady).

(V32A)y=(Vs);2Ap=s @ [(Vs);2Aplq 402 &) E(Ap/aAp).
Ay A i =1 R T S

.........

Vit A)ps= (V) i A= (V A E(Ap/qA
p=(Vs) e (ad g LVs): DJQA”}I(A%”'Z*)( p/94p).

Hence (Vi'A)y, (Vi*4)y, -+, (Vii{'A), are injective Ay-modules. Since Ay is a Goren~

stein local ring of dimension 7—1, we have an injective resolution over Ag:

0 A= (V71 A) g omms (Vi 1A Yy T,

This means that
(V;"A)p:—-:l

and so the sequence (3¥) is a minimal injective resolution over Ap. Therefore, by
Lemma 4.5,
Vitd)p= D E(Ap/aAy) =E(Ap/vAp) =E(A/P). ///
qA ESpec (Ap)
t(qu) "”t’_l
— 80—
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Corollary 4.8. Under the same assumptions as in Theorem 4.7, we have

VitA= @ E(A/p).
pe=Spec(A4)
hE(p) =i—1

Corollary 4.9. Under the same asumptions as in Theorem 4.7, the complex € (¥, A)

0 AL VA B VA @y AL Viri A

is a minimal injective resolution over A.
Proof. Since, for j>n+2, every element of V, is of the form (v, v, --,v.,1,1,

-+, 1) by definition of V;,
VitA=0

by Proposition 2.9. Therefore the result immediately follows from Lemma 2.11 and

Corollary 4.8. ///

— 81 —
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