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1. Introduction

One can find the latest Tnformations about Riemannian gemetry in the paper [19].
The important problems arising in Riemannian geometry usually resolve into the
investigation on the properties of curvatures and geodesics ([57,[14],[180).

In this paper, we present the results obtained through the seminar on covariant
derivatives and geodesics in 2-dimensional Riemannian manifold. We briefly outline
the scheme of this paper as follows.

In Section 2, we define terminologies which will be used in Section 3 and 4. Also
we prove four propositions to derive some properties concerned with the terminologies
(Proposition 2.3, 2.6~2.8).

In Section 3, we prove two theorems for covariant derivatives ; that is, we present
the relation between the Euclidean covariant derivative and the covariant derivative

for two vectors on a surface (Theorem 3.2) and prove
X uu=X vu

for orthogonal patch X (Theorem 3.3).
In Section 4, we prove two theorems on geodesics ;'that is, in Theorem 4.6, we
show the condition for a unit speed curve to be geodesic, and in Theorem 4.7 we

present the relation between a curve to be a unit speed geodesic and a curve to be a

barrier curve.

2. Preliminaries

Let M be a n-dimensional (real) C” manifold with coordindte neighborhoods U=
{(Usy®.)}. Then there exists an open subset V, of -R" such that ¢, ; U,—~V, is a
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homeomorphism and we have a commutative diagram

T(U.) L2 s T(V.)

L

Uk -2 v,

where 7T(U,) is the tangent space over U, and ¢, ié the natural map induced by ¢,.
For each ge=¢,(U,)=V,,T(V.) has the natural basis

............

and if we put

EJ=§0a-t'l( 32:’ )

then E,, -, E, are C* vector fields over /. That is, if 0.(p) =g, then
El(p)r"Elps """oEn(p):EnP

is 'a basis of T3(U) which is called the coordinate frame.

Let @ : T(M)x T(M)——R be 4 bilinear form, i.e., for each pe=M ®|T, (M) =
D : Tp(M)XT,(M)—>R is a bilinear map. For each coordinate neighborhood (U, ¢)
of M a C” function X : U——T(U) is called a vector field over U. We put X(p) =X,
for each p=U. ‘

Now we consider two vector: fields X and ¥ over U and put O(X,;,Y ) =0,(X,,Y,).

Then we have a function

O(X,Y) : fﬁ“"ﬁ
pr—=0(X,Y)($)=0p(X,, ¥ y).

If for all pair of vector fields and all coordinate neighborhoods @ is of class C~, then
w;ve say that & is a C”-function. If a bilinear function @ : T(M)XT(M)—R is
symmetric, positive definite and of C*~class then ® is called a Riemannian metric or
an inner product of M ([3]). An n-dimensional manifold with Riemannian metric is

called an n#-dimensional Riemanniarn manifold.

Definition 2.1. By a surface we mean & 2-dimensional Riemannian manifold. In

this case we shall put Riemannian metric= .. A frame field on & surface M consists
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Some Remarks on Covariant Derlvajives and Gepdesics in Riemannian Surfaces 3

of two orthogonal unit fields £, E; defined on some coordinate neighborhood of M.
That is, E;+E;=08;,(1<i, 7<2), where 8;; is the Kronecker delta.

Let £, and E, be a frame field on a surface M. We shall defiﬁ;e' the dual 1-forms
6, and 4; by

0{(Ej)”—*5ij (lgl': J_<..2)
Then we have the first structural equations
d6,=1w;2/\Os dby=wuNbss

where wi; (1=2f, j<2) is the connection form. Moreover we have. second structural

equation

dwiz=—K 01\ 8z
where K is the Gaussian curvature ([16]).

Definition 2.2. Let M be a surface. A covariant derivative ¥V on M assigns to
each pair of vector fields VV and W on M a new vector field VVW' satisfying the
following properties : For vector fields V,W,Y, Z, differentiable functions f,g : M— R

and the connection form w,= —wy of a frame field Ey, £y
() Vy(a¥ +bZ2)=aT Y +bVvZ (ab: constants).
() Trone(¥) = fTvY +8T5Y.
(i) Vy(fY)=VIfIY+fTvY, where for pe&=M and a coordinate neighborhood
(U,p) of p

VoL 1= (f @ @B +V () Lieo

(iv) VIY+Z1=(VyY) + Z+Y + VyZ.
(v) w (V)= E, - Ea.

Proposition 2.3. Let ¥ be a covariant derivative on a surface M, and let ELE»
be a frame field of M. Then

VvE =w(V)Ea
VvEs=wa(V)EL

Moreover, if W= f,E+ f:E; where [y, f2: M — R are differentiable, then we have
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the covariant derivative formula

vaz {foxj'f"f:wu(v))Erf‘ VLS al+ f1w(V)) E,.

Proof. Since E;«E;=0 by (iv) of definition 2.2
0=V[E+Ey]=(VvE\) Es+E+VvE,
and thus by (V) of definition 2.2.
VvEyEy=—VyE Ey=—w3(V) =wa (V). ereeeresvereans 2—1)
Since 0:;(V)=0 for i=1.2 by (V) of definition 2.2
VB Ei=0 (§=1,2). srereeererrreresenusomssneeosiseessanes (2—2)
As VyE(1<i<2) is a vector field, we can write
VyEi=anE+aiE,.
That is,
VvEi=anEi+a1Es, AvEy=anE)+ank,.
By (2-1) and (2-2) above we get
an=0, @=w(V), eu=wa(V), a;=0.
Thus,
AvE\=w,(V)E,, VyE;=wyy(V)E,.
Next,

VW =Ty ([1E1+ FaE) =V v (f1E) + V¢ (f1E2)
=V B+ F1IvE +V [E+ F iV vEy

by (iii) of definition 2.2. Since
VvE1=wn(VYE, and VyE,=w, (VIE,
as before, we have
VW ={VL 11+ Fawan(V)} Ey+ (VL f2]+ f11,(V)} E..

Let M be a surface with coordinate neighborhoods (U,,¢). Then there exists an
open subset V, in E?, 2-dimensional Euclidean space such that
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Some Remarks on Covarlant Derivatives and Geodeslcs in Riemannian Surfaces 5

o U y—-—%-)Vv
is a homeomorphism. Therefore
q)'l : Vy""“"—')M

is also a one-to-one regular mapping into M for some coordinate neighborhood (U, ¢)
of M (go¢p™* is regular : A mapping f : E*—E® is regular provided that for each
point peE* the derivative map f4, is one-to-one).

Thus, for each surface we can define a coordinate patch as follows :
Definition 2.4. For each surface M a coordinate patch
X : DM

is a one-to-one regular mapping of an open subset D of E? into M.

Let us suppose a coordinate patch

X : Do M

W V)
(s, ) X (u, )
where D is open in E? and M is a surface. We put

_ X _ X
X"*““““‘au anng-m———au .

Then, for each P=X (0, 2,)=X (D) X, (storve)s Xo(tho,v0)=T,(M) and thus we can
define X X ,=E, X, X,=G and X . X,=F.
If XX ,=F=0,X is called an orthogonal coordinate patch.

Definition 2.5. The associated frame field E,, E, of an orthogonal coordinate patch

X : D—— M consists of the orthogonal unit vector fields E, and F, such that

Ey=X,(u,0}/VEu,v), E3=X,(u,v)/vG(u,v).

In the above situation the dual forms ¢, and £, are characterized by 8:(E;) =8y

(1<i, 7<2). Moreover, we have the following :

B1=E dut, O3=nG dpererreeserssmscsirnernivineiiiinnenanns (2—8)

Proposition 2.6. In the above situation, we have
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d6,=(—(VE),/VG) dunb,
dby=(—~ (V&) ./VE) doAb,

and

- (WE), (&)
wye v du-+ ‘/Er.dv

Proof. From (2—3) above
d6\=dJyE) Ndu+VEANd*u=(JE), dv\du
(=X X} dvdu)

(VB -G e — WED
=(E)y e Ndu=— 20 dupd,

>4

and similarly,

b, =(JC), du /\dv:-(l/;/(;%'fﬁl Adv

= :—‘(*i._:.G“ZIL d v /\01.
by
By the first structural equations,

dﬁl :w”/\ﬁzy d02:Wz1<51-

We note that there exists only one w,, satisfying the above equations.

Now

dﬁ;+d6’z:~-(7§:)i‘— du/\02-£7% do A8,
g1 N\ By —0)) . srereeesensectnctemnieioriionninnn (2—4)
On the other hand, since
O,=vE du, 0,=JG dv,

we have a solution of (2—4) such that

—_WE), WG).
Wig Wil du+ e dv.

By the uniqueness of w;, our proof is completed.
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Some Remarks on Covariant Derivatives and Geedesics in Riemannian Surfaces 7

Proposition 2.7. In the above situation

s (D) () v

and

K WA, ) + (g_/,_f?)) ]

«/E {( vE vG

where K is the Gaussian curvature ([11],[173.[200).
Proof. By Proposition 2.6.

?

D

dw,= ( —*(-:/-/;—g;)—i)y dv Ndu+ (3,/

7 e )du/\dv

m;l

By (2—3)

6:/\0:=vEG du/Ndv.
Hence

dwn:q/”zlb’;*{(( G) )"-1‘"<~({—/:%"~>u}(91/\52.

Moreover, for the Gaussian ¢urvature X, since we have

dwlZ:: ”Kﬁl /\02:

we get

e (6B) (42

Let M be a surface with coordinate neighborhoods (U, ¢). A curve is defined by a
differentiable function

atl— M

where I is an open subset of E!, 1-dimensional Euclidean space.

Therefore, if a(1){(\U=¢, then for a *{(a( 1) \U)=1', ¢ca|l’ : ['——VCE? is
differentiable. If each goa|l’ is regular, then the curve « is said to be regular,

Let X:D—~— M be a coordinate patch and assume that «([)CX(D), where a: /]
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8 Seung-Gook Han

—— M is a curve in M. Then there exists a unique differentiable functions a;,a; on

I such that

a(t) =X (ai(t), a:(t))=M
for all fe=1.

We assume that a surface M is in E®, 3-dimensional Euclidean space. Let U be a
unit normal vector field on a neighborhood of pe&M. For each #e=T,(M) we define

Se : To(M)—T (M)

by S,(®)=-~V3;U, where A is the covariant derivative for the natural frame field

Uy U; and U, as in the figure :

(0.0.1) E?®

(1,0,0)

For each Pe==MCE®, S, is called the shape operater, which is a linear map ([8],[9],
£13D.

Proposition 2.8. In the above situation, &, BT (M)
Sp(B) « W=S,(W) « B,

Proof. At first, we shall prove that for a curve a« : J—M and the unit normal
U of M,S(a’)=~U’, where o’ is the derivative of a and U’ is the derivative of U.
Let a(t)=(a1(#), a:(t), as(?)) and U=(u;, #;, 4;), where u; is a function x;, x;

and x4 for /=1,2,3. In this case

S(a")=— LU
= — (&’ (O U+ &’ () [a: U+ a’ (D) [0 10U s)

. 3 8u1 . dx‘ 3 au, dx',' 3 au,, dx;,
=—(5 g U D P U g )
= (04, U s+ 22 Us+15'Uy)

=—(U")
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Suppose X : D—— M. Let X.(u,,v,) and X,(wo, v,) be a base of T,(M), where P=
X (u5,v5). We shall prove that So(X (25, 10)) © X (5, 00) =S, (X (00, 00)) * X (2, 0g).
Note that U-X,=0=U-X,. Hence, we have

LU XU, XU X0
and

O U Xy =U s XU X o=

?‘u vy v+ * uu““o-

Consider each v-parameter curve #=u, and the covariant derivative of the vector field

vr—l (ug,v) on u=u, By the first description in this proof U,=-S(X,) and U,=
—S(X,). Hence we have

U X,,=5(X,)-X,
U'Xvu::s(Xu)'Xv'

For X,,=X,, as in Theorem 3.3 we shall prove our assertion using S(X,)-X.=
S(X,)+X, as follows. We put

T=0,X, (g Vo) + 03X, (s, v3) and ==, X, (a0, v¢) +1w2X (249, V).

Since
Sﬂ(ij) = U= —'vv;x,(uo.uo)'{»u,xv(ug.vo)U
= =01V cups o)l 02V 2 yugrvg U
= 0185 (X (046, 00)) + 025 (X, (46: ¥0))
we have

Ss(0) % = (15, (X u(t40, Vo)) + 025 (X (s6s Vo)) + (w1.X o (40, Vo)
+awa X, (4o )
=0121,S 5 (X u (401 0)) « X' u(#hos Vo) + 0320153 (X o (#h0s ¥0) ) X (100, ¥o)
+ 010385 (Xu (20, 00) )+ X o (tos 09) + 03035 5 (X' (0) 6)) + Xy (40, )
= 100155 (X o (so, 00) ) + X (2095 U0) + 202015 5 (X, (%0, ¥0) ) X o (140, o)
+10102S 5 (X (40, 6) )+ Xy (40, 00) + 102038 (X, (46, ¥9) ) * X, (840 V)
== (W15 p (X (0, V) ) +wsS s (X (240, ¥6))) (92X (%40, ¥o) +03X , (40, ¥5))

=S’(l‘l—}) 'E-
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3. Some Properties of Covariant Derivatives

The covariant derivative 7 of a surface M {(cf. Definition 2.2) may be modified so
as to be applied for a vector field ¥ on a curve « in M. Note that for each £,Y(#)
is a tangent vector of M at a(?). Let E,,E; be a frame field on a region of M cont-

aining a. Then we can put such that

Y (@) =y:()Ei(a(®)) +y:2(1) Ea(al(?)).
or briefly,

Y=y,E14+5:E,

Definition 3.1. In the above situation we define the covariant derivative Y of ¥
by Aa’Y ;ice., by

Y= {9, +ygwn(a’)} Er+{yy +ywi(a’)} E,.

Moreover, if Y/=0, then a vector field ¥ on a curve « in M is said to be parallel
(see Proposition 2.3 and note that o’ (£)[¥,J=»,) ([10],7121,[13]).
It is a routine matter to check that this notion of covariant derivative is independ-

ent of the choice of frame field and has the same linear and Leibnizian properties as
in Definition 2. 2.

Let W be a vector field on E* and let ¥ be a tangent vector to E® at the point

PeE®, The Euclidean covariant derivative of W with respect to 7 is the tangent vector
o~ d -
V;W:WW(pHv) [.=0

at th e point p. If W:izl w Uy, where U,,U; and Us are the natural frame field of

E3?, then we can prove that
~ 3
VaW=§5[wfj U.(p)

([41,[67,[71). Moreover the Euclidean covariant derivative < satisfies the properties
(i)~ (v) in Definition 2.2

Teorem 3.2. Let ¥V and W be vector fields on a surface M in E® If ¥V is the
- 134 -
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covariant derivative of M as a surface and % is the Euclidean covariant derivative, then

VW =T W (S(V) WU
where S is the shape operator derived from a normal unit field U of T,(M). If a is
a curve in M, then

a"=a’ +(S(a’)-a")U,

where &":5,,'01' and a’” =2’
Proof. Let E,,E:. Es be an adapted frame field and let w:; (1<, F<3) be the

connection forms of £y, E,;, Es. Then we first prove that
~ 3
VVE;‘—:;};?wi;(V) F1<i<3).

-which-are called the connection . equations of F,, E; and E,;. Note that each w,, is an

1-form w;;= —w;; and at p

i, (V (P)) =Dy imyEi(B) B (D) rererrecerserersraverernnsnns (3—1)

Then it is clear that
~ 3
‘\‘/vEgz%;;‘wu(V)E,

is a solution of (3—1). By the uniqueness of solution (3-—1) holds.
We assume that W is one of vector fields E,, E; Es. Then by the above description

for E\=W

TyEr=ws(V)Er+wis(V) Es
=VyE +wi (V) Es

because VyFE;=w,(V)E, by Proposition 2.3, That is; %vE; is VyE: plus a vector
field normal to M. Here, we note that E;(p) and E;(p) are vectors in T,(M). The
same result holds for E,=W. ’ R

In the general case, we can put

W=F\E\+f.E,

=~ 185 -~
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where S F2: M—R are differentiable functions. Then

ng—’—‘ev(fxErf'szz)=€7dv(fxEx) +€7Uv(szz)

=VLAJ-Ert F10vEs+VLf21 Bt F1VvEs

=(VLAI+fawwa(V)E -+ (VIF 1+ Frwn(V)) Ey
+(S1015(V) + f o (V)) By

=VvW +(f1w1a(V) + fawa(V)) Es

(see Proposition 2.3). Hence

TAW =W —(F (V) + F 003 (V) Es

ﬁva“(fx’%vEs‘Erf'fz%‘vEs'Ez)Ea
=VVW+(S(V)'(flEl‘f"szz))U
=VyW+(SV) WU

where E; | T,(M) and thus +E;=U. Therefore we have for each curve a : [— M

Vot =Vard +(S(a)-a’) U.

That is, we have

o =a" +(S(a)-a) U.
For a surface M an orthogonal coordinate patch
X:D—M
means that X, | X, where D is an open subset of E? with variables # and v.

Thoerem 3.3. For a surface M in E® let X : D—-+M be an orthogonal coordinate
patch. Then X,.,=X,..

Proof. In our situation we can put
Ei=X,/VE, E;=X,/VGC
as in Definition 2.5. We shall prove that
quXu::(Xv)w vx,Xu=(Xu)v'

Since for a differentiable function f : M—R
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X.LF1=30 ana x,r1=2L

([131,[167), we shall put
Xo=fU+ fUs+ foUs
where (U, U, Us} is the natural frame field. Then
Vx, Xo=22X [ U
9f ‘

i
=(X,)u=X

Similarly, we can prove that ¥y, X,=(X,),=X,,-

By our definition in Section 2,

wa(X,) =V B E1=VX, <~/G ) . (—-‘*Y::;'L)

vE
(). 7= e

Note that

(). 3= ) e

since X, 1 X,. On the other hand, by Proposition 2.6,

e By g, W)y 4,
Wyg== '\/6 du+ JET dv

Since du and dv are 1-forms satisfying
du(X,)=1=dv(X,), du(X,)=0=dv(X.)
([16]), we have

wn(X.)=(E) /G
=L X XOYNT

— 13V =~
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= X"!’...'._‘g_!.‘.
vEG
Thus, we have
X X
-Xvu"'":::":Xw s
vEG vEG

and thus X,,=X,, holds.

4. Geodesics in Surfaces

Throughout this section, we use M as a surface without any statements.

Suppose that a : J—— M is a curve in M and E, E, is a frame field of M, where
I is an open interval in E'.

We put

da

‘dt”za,=v1E1+szg

where v,y : M— E* are diferentiable. For the covariant derivative V of E; and E,

we also put
Ve =a" =AE,+AE,.
‘Then from
Varet' =a'[0,JE1+ 101V o By +ar[0)E 3+ 0,V 0B g
= (v + v (a’))Er+ (0 +vyw(a’))E,
we have

Ar=v) 4+vwy(a’), Ay=vy+vw(a’),
which are real-valued functions defined on I. -

Definiton 4.1. In the above situation a is a geodesic of M if and only if A;=0

=A,, i.e., a"=0.

Lemma 4.2. Let X : D— M be an orthogpnal coordinate patch (c¢f. §2). A curve
a(t) =X (a,(t),a,(t)) is a gecodesic of M if and only if
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a’ + _ZlE_v {E..a;’z + 2E"a1’az’ ""Ggazlz} =(}

and
af+ —élc*;{—E.al”+2G.,a;’a,'+G,a,"} =Q.
where
Bu=-2 XX, Gu=—P-X,-X
“ au “ ) ") T“— (] v

etc. ([11,[21,[16D).

a5 da day
Proof. a'=—pm “X“7t—+x" 77
=(ayVE)E1+ (8’ VG)E,

by Definition 2.5, where E;, F, is an associated frame field Here we note that
X.1X,, E;=X./vE and E;=X.,/VG.
Thus we have
Ar=(a/VE)' +(ai'VG) wa(a’)
Ar=(ay'VG)' +(a/'VE) wn(a’)

by the above description. By Proposition 2.6
wip(a’) =—:-(—3,/=G§_—)-" du(a’) +(—://—g.)f—dv(a’)

=~%%)ldu (@' Xo+ar .)+%-g..~.)idv (' X +ar' Xo)

= —-Q://—,-%)-"-al’ +§__j_g___‘),_u_ ag’.

Hence we have

VCWGCh , n

Av=(a/VE) + (WE)ai'a) — Vi

=ay" «/‘E+a1'2~}§-<2,a1'+Euaz') +(WE)aral

=J‘E (al” + .ZLE (Eual,z + 2Evalla3, - Gual’z) ) *
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Similarly we have
As=yG (a)" + _2% (—E.a.?+2G.a)a)’ +G.a,'%)).

By our definition a is a geodesic of M if and only if 4,=0=A,.

Therefore a is a geodesic of M if and only if
a -+ ELE(EML" +2E.a:/a)" —Gua'*) =0
a;’” + ,2%( —Ea2+2Gua a’ +Goay'?) =0

and this completes our proof.

Definition 4.3. A Clairaut parametrization X : D~— M is an orthogonal paramet-
vization for which £,=G,=0.and F=0, where £=X.-X,. F=X. X, and G=X,-X,.

If X:D——M is a Clairaut parametrization, then we can prove the following ([15]
{161 ;

Property 4.4. (i) Every w-parameter curve of X has curvature zero. (We shall
say that every w-parameter curve of X is pregeodesic in case of (i).)

(ii) A v-parameter curve u=u,, is a geodesic if and only if G, (4,)=0.

Proposition 4.5. Let X : D——M be a Clairaut parametrization and let a(?)=
X (a\(t), a:(¢)) be a curve in M. Then a(f) is a unit speed geodesic if and only if

(i) C=G(ay)a,’ =+G{a,) sinp is a constant,
(i) a=+vG—C%/yEG and Gay'=C
where ¢ is the angle from X, to a’.
Proof (=) : Since X : D— M is a Clairaut parametrization by Definition 4.3,

E,=G,=0. Since a is a geodesic of M by Lemma 4.2, we have the following

Gy ’

a,” + I8 aya) =0.

But, since
(Gay') =G'ay +Ga," =G as’ + Gy + Gay"
= 71;“ (a)’ +v%'~a,’ag')
=0,
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C=Ga,’ is a constant.

Next, we want to prove that C=yG sing. Since
a’X,=(a/X. +a/X,) ‘X,=a) X X,=GCGa’
and

o -X,=la' NI X} cos (£—¢)=IX,] sin ¢=vT sin o,

we get Ga,’ =G sin ¢p=C.
Since a' () =X.a' +X.,a’,

l=a’(t) o’ (t) = (Xua)' + X,a,") - (X0 + X ,a7)
=FEa\*+Gay*=Ea,"*+Ca,’.

’ ’
a) =— "G 2C = ‘qi"(Guall +Gyay) = ”‘""G’E:L'”Guallz ""(—;%L a’ay.
G G G G
That is, we get
az” +._.(_;‘Lal’az’;— ................................................ (4._.1)

Next, from

*a)'=yG-C/JEG
we have the following :
G’ E'G+EG
, 2/G-CVEG—JG-C* " 3J%q
== EG

—{2
"—"i 2%“(; ¢ Z?EGc)z (EQG"I'EGH)

1 G-—C? 1 ct
=+355 "G Evtag O

Therefore we have

ay 'él"E(Eua:” G y@g"2) = (erererrrrvirirninnesssaesinennanns (4—2)
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Since £,=0=G,, by Lemma 4.2, (4—1) and (4—2) imply that a(f) is a geodesic of
M.

That a is a unit speed curve is proved as follows. Since a’(f)=a/’X.+a’X, and

X.l X, we we have the following :

a’'(t)-a’ () =X, X0+ X, X0,

=FEa*+Gay'?

= JG "C‘ * C
_G-c ¢
= =

Theorem 4.6. Let a be a unit speed curve such that a’ is not collinear with E,
and let £, E; be a frame field. In o’ =A,E,+A4Es, if A,=0, then « is a geodesic
of M.

Proof. As before, we can put such that
a'=01E1+szz.
Therefore

' =Vga' =a' [0, ]E1+ 0,V Ey+a' [0]E 340,V o E
=(v) +ogoy(a’)) Ei+ (@ +vw(a’))E;

and thus
Ay=v"+v0y(a’). Ay=vy +v1w15(a’).
By our assumption 4,=0, {.e.,
01 00 (@) =(eernverenee ereesserrseavra e s aes s variesarnate 4—3)

On the other hand, from

we get
v +ogpy =0, f.e., vty = —vy.

By (4—3)

0,0 + 0wy (') =0
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implies
— Dy — 0 Vwp(a’) =0
which in turn implies
vy o0 (a’) =0.

Therefore we get a” =0. By Definition 4.1 a is a geodesic of M.
Let X : D——M be a Clairaut parametrization and let @: I—-M be a unit speed
geodesic of M with slant C=Ga,’ where a(#) =X (a:(¢), as(¢)). Suppose

a(0) =X (a:1(0), a2(0)) =X (5, vo)

with @,"(0)>0. Assume that there exists »>#, such that G(x)=C2 Let u, be the
smallest such numbers u>u, with G(#)=C? Then

B(®) =X (uy,v)
is called a barrier curve for a.

Theorem 4.7. Let B(v) =X (w1, v) be a barrier curve for a unit speed geodesic a(f)
of M as in the above description.
If B is a geodesic of M, then « and 8 are not intersected.

Proof. At first we note that
o =a)/ X +a’X,, F=a)’X,.
By Proposition 4.5

L) :'\/G(u‘l) —C? =0
‘ JEG

and thus
al [t =B uy=ay (t*) X, (1)

where a,(#*) =u,. If a[]B is not empty, then there exists v, such that X (u,v)<=a}
B. Note that « and 8 are geodesics of M by our hypothesis. Moreover, at the point
X(uy, vy) =a(ty) =p(vy)

a' () =f(v1).
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By the uniqueness of geodesic ([3],[15]) we have a=p. This is imposible, sine a(?)
passes through the point X (u,,v)e=M, but not 8.
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