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A Note on Bayesian Reliability Estimation
for the Lognormal Model
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ABSTRACT

The problem of estimating the reliability using the Bayesian approach and the
prior information about the reliability of a lognormal distribution is considered.

Some Bayes estimators are proposed and studied under the squared error loss
and the Harris loss. Also Monte Carlo simulations are carried out to examine the

performances of the proposed estimators and results are provided in the tables.

1. Introduction

In the problem of estimating the reliability of a certain system, a lognormal
distribution is frequently used among many failure time distributions. For example,
Howard and Dodson(1961) and Adams(1962) proposed the lognormal as a failure
model for semiconductor devices and (computer) transistors. Mann, Schafer, and
Singpurwalla(1974) showed that it is an applicable model for failure due to fatigue
cracks. In addition, Ratnaparkhi and Park(1986) derived the lognormal model for
the fatigue life of a composite material.

For Bayesian estimations, Evans(1969) discussed the benifits of Bayes estima-
tions in the reliability problem. Padgett and Tsokos(1977) proposed and studied
Bayes estimators of parameters, the mean time before failure and the reliability
function. Also Padgett and Wei(1977) studied Bayes estimators of the reliability
function and compared them with the maximum likelihood estimator(MLE) and
the minimum variance unbiased estimator. The Bayesian lower bounds on the re-
liability function were investigated by Padgett and Wei(1978) and Padgett and
Johnson(1983).
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However, in the most of these studies for estimating the reliability, the prior
informations about the parameters of a lognormal distribution were used rather
than the prior knowledges of the reliability itself. Hence in this paper we consider
the problem of estimating the reliability using the Bayesian approach and the prior
information about the reliability.

In Section 2, we formulate the problem of estimating the reliability and some
motivations are given.

In Section 3, some Bayes estimators are proposed and studied under the squared
error loss and the Harris loss.

In Section 4, Monte Carlo simulations are carried out to examine the perfor-

mances of the proposed estimators and concluding remarks are given.
2. Motivation and Formulation

Suppose a random sample X = (X;, X5, -+, X,) is available from a lognormal
distribution with the probability density function(pdf), denoted by LN (y,o?),
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Our goal is to derive a Bayes estimator of the reliability function, at a given time t,
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where ®(-) denotes the cumulative distribution function(cdf) of a standard normal
distribution.

Assuming o? is known, Padgett and Tsokos(1977) proposed the Bayes estimator
of 8 with respect to a normal prior N'*(), £?) for u and the squared-error loss, which
is given by

A 1 i+ A 2 /g2 _ 1 —%
93:@{[2 2102/22/6 —-lnt]a 1[1+m6_2] }, t > 0. (2.3)

Also they obtained another Bayes estimator with respect to a uniform prior

U'(a,B), a < B.
Under the assumption of unknown u and o?, Padgett and Wei(1977) suggested

a Bayes estimator for 8 with respect to a normal-gamma prior
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(p, 0?) = M (plo?)y(o?) < N (A, 702)G7" (o, B)

and the squared-error loss, which is given by

~ | a* Int—A*
0c=1—P|Toor < 4|77 ——=|, >0, 2.4
o 1 <[5 s 24
where
ny+ A/ 1 . n
/\*z——————— ="::———-——,‘ = -,
n+1/~r’T n+1/7 * a+2
* __ 1 ) _\2 'fb(‘y—"/\)2 l -1
Fr=F+5) (nzi—gf+————2An+2)| ,

and The« is a random variable having a Student’s t distribution with 2a* degrees
of freedom. They also obtained a Bayes estimator with respect to the vague prior,
g(p,0) < 1/o, which is given by

ﬁv,=1—P[fz",,_1<(lnt_y)“’”_1 t>0 (2.5)

$V/1+1/n | ’

where

§?=) (Inz; - )%

Here one can notice that most Bayes estimators of the reliability were derived
with the priors on the unknown parameters rather than the reliability itself. How-
ever, in practice it is much easier and more reasonable to give a prior on 6 directly
than to give a prior on y. Furthermore, it is very hard to provide the ‘equivalent’
priors on different unknown quantities, even though it can be taken into consid-
eration the relationship between u and 6 in the equation (2.2). Thus some Bayes

estimators with the priors on the reliability will be deriven in the next section.
3. Some Proposed Bayes Estimators

In this section we consider Bayes estimation of reliability #. Suppose, for a
given(fixed) time t, the beta prior distribution with parameters o and § , © ~
B%a,B), a,f > 0, for 6 is used. o%is assumed to be known. Based upon a
random sample X = (X;,Xs, -+, X,) from LN (p,0?), the likelihood function can



38 Joong Kweon Sohn and Yeung-Hoon Kim

be written in terms of § as

L(81X) x exp{_g@—lw)z n 1G> InX; —nlint) }’ (3.1)

g

0<f<1,0<0% 0<X;<00,i=1,2,---,n.

Then the posterior density of 8 given X = z is

Z o

(0lz) = exp{—g@_lw)z + 1) Inzi —nint) }90_1(1 —6)"1/1, 5, (3.2)

where

1 —1(9)2 ~1¢ -
Iog = / exp{—nq) () + 27N (O)(L i —nlnt) }9""1(1 —8)%71 48.
0

2 a

(3.3)

Hence with the squared error loss, the following theorem can be obtained easily.

Theorem 1. Let I(6) = 6*~(1 — 6)#~/B(e,8), 0 < § < 1, be a prior
density of 8. Then the Bayes estimator fs of the reliability function is

. I,
fs = ZorLE (3.4)
Tas

where I, is given by the equation (3.3), and B(a, ) a the beta function with

parameters « and .

If a = 8 =1 for a beta prior distribution, then 8 follows a uniform distribution

U(0,1). Thus the posterior distribution of 8 given X = z is, for 0 < 6 < 1,

=1 . Inz; —nl 2
(6le) = /2o (p(q)_llw)) exp{—%—%(a@‘l(())—z—-%—l—n-é) }(3.5)

,where ¢(-) denotes the pdf of a standard normal distribution. Hence one can get

the following corollary.

Corollary 1. Let II(#) =1, 0 < 8 < 1, be a prior density of §. Then the

Bayes estimator fs of 6 is
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proof.

Consider the one-to-one transformation Y = ®~!(§). Then 5 is the posterior

« oo n+1 n+1 Yinz; —nlnt)’
bo= | o5 en{ 2 (o= S Jo

mean. That is,

= /_Z ® [Zl(nnxjr_l;lnt o 1)}“’(” =

_ & Y lnz; —nlnt [n+1
- (n+ 1o n+2)’
by 10,010.8 in Owen(1980).

Notice that the Bayes estimator fg is approximately equal to the MLE

@(M) (3.7)

no

for large sample. Also as £ — co, the Bayes estimator (2.3) is approximately equal
to the Bayes estimator 8, and MLE for large sample size.
Now, we consider the loss function suggested by Harris(1976) for the case k=2,
which is
1 L o

L@.8)=l—5~7% (3.8)
The reasons of proposing such a loss function were as follows:

“If the system reliability 1s 0.99, on the average it should fail one time in 100,
whereas if the system reliability is 0.999, it should fail one time in 1000 and hence 1s
ten times as good. Thus the loss function should depend on how well one estimates
(1-6)"t.”

Under the Harris loss the Bayes estimator § of the reliability can be deriven

from the following relation

-1—1—5 = Ee'ﬁ[%] = 7(z). (3.9)

Thus

0y =1 ——, (3.10)

where
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1 Iy -
, 6|z a,B-1
y(z)=F —[1 0] = P (3.11)

Then the following theorem and its corollary hold.

Theorem 2. Under the Harris loss function, the Bayes estimator 6y of the

reliability function with respect to the beta prior, B%(a, 3), is given by
5 I,
by =1- 28 (3.12)
Ia,ﬂ—-l
where I, g is given by the equation (3.3).
Corollary 2. Under the Harris loss function, the Bayes estimator 8y of §
with respect to the uniform prior over (0,1) is
gH =1- %} & -1 ?
Sl e(2)(1 = ®(h(z,t,n))) dz

(3.13)

where
(Zlna:,-—nlnt)+ z
(n+1)o vn+1

Next, we consider a Bayes estimator for the reliability 8 when the paramter u

h(z,t,n) =

(3.14)

is known. Without loss of generality, it can be assumed that 4 = 0. For a given
time t, if a prior for & is a beta distribution with parameters @ and 3, then the

posterior density of 8 given z is

1(6l2) = 0 (6)" exp{ - ) ZEEE g - 001,50 <0 <1

(3.15)

where

1 ~170)\2 nz:)?
Ja,p = /0 @'1(9)"exp{—q) (92)(15)(2} J }9"“1(1—9)"‘1d6 (3.16)

Hence the following theorem can be obtained easily.

Theorem 3. Under the squared error loss and a beta prior with parameters

« and {3, the Bayes estimator ég is

0% = E°lz(9) = Jat1p (3.17)
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where J, s is given by the equation (3.16).

Also using the lemma by Padgett and Wei(1977), one can get the following

corollary.

Corollary 3. Under the squared error loss and a uniform prior #4(0,1) for 6,

the Bayes estimator ég-* is

" —int
9§=1{mﬁ1< n ], (3.18)
E (In z;)%2+(In t)2
n+1

where T, is a random variable having Student’s t distribution with n+1 degrees

of freedom.

Remark. As n — oo, (3 (Inz;)? + (Int)?)/(n + 1) — ¢?,a.e. and thus Tot1
follows a standard normal distribution as a limiting distribution. Therefore, the

estimator ég-* is a strongly consistent estimator of 6.

If the Harris loss is used, the following theorem and its corollary can be obtained
similarly.

Theorem 4. Under the Harris loss, the Bayes estimator é}{ with respect to a

beta prior with parameters a and f is given by

by, =1 o (3.19)

Ja,ﬁ-—-l,

where J, g is given by the equation (3.16).

Corollary 4. Under the Harris loss, the Bayes estimator é;}' with respect to
a uniform prior 4(0,1) is

1
T T ez @(ntyz) L dz’

where g(-) denotes the pdf of a gamma distribution with density

o5 =1

(3.20)

&¥2¥"1e%2 IT(¢), z> 0.
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Remark. Even though the parameters are unknown, it is possible to have some
information about the relation between mean and variance, such as the coefficient
of variation(CV). For the lognormal model, the square of CV is ¢’ — 1. Thus for
known CV, the Bayes estimators can be obtained by replacing ¢? in the equations

(3.4), (3.6), (3.12), and (3.13) with In(CV? + 1).

4. Monte Carlo Simulation Study

To evaluate the performances of the proposed Bayes estimators for known o2

and the given mission time t, some Monte Carlo simulations were carried out.
The International Mathematical and Statistical Libraries Subroutines MDNOR,
MDNRIS, and GGNLG were used and the Gauss-Legendre quadratures based on 50
points were used for the numerical integration and simulations were replicated 1000
times. We consider both the squared-error loss and the Harris loss with several prior
distributions for § and u. The estimated mean squared errors(MSE’s) and biases
of 85,605,605 .,05, and g were computed and tabulated in Tables 1 and 2 (biases are

given in the parenthesis).

From Tables 1 and 2, one can observe the followings:

1). The Bayes estimators of 8 with respect to the prior distribution for § perform
better than the Bayes estimator with respect to the prior distribution for u
in terms of MSE ( bias ) , provided that the prior for # spreads near the true
value of 8 regardless of the type of a loss.

2). The estimated MSE’s (biases) decreases as n increases for both the squared
error loss and the Harris loss.

3). The estimated MSE’s (biases) become close to each other as the true value of
# approaches to 0 or 1 for both losses.

4). The performances of the proposed estimators are relatively sensitive to the
prior. That is, the MSE’s with a proper prior are smaller than those with a
wrong prior.

5). For a given prior distribution, the estimator under the Harris loss performs

better than the estimator under the squared error loss as # becomes larger.
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Table 1. Estimates of MSE’s and Biases under the Squared-Error Loss

! Prior for ¢ Pror for u
(p. oM nl ¢ 9 B(1.9) B(3.7) B(1.1) B(5.3) B(T7,3) B(9.1) N(0,1)  M(1,0.648) N(1,0.105)
{0,.3) 10f0.5 8365 07242 03951 00778 01777 . 00601 00275 00680 .00528 01180

(-.25896) { -.18621} { -.04233) { -.11653) ( -.05044) ( ,01108) .02:98) { .00370) { .10006}
0.7 .5930 .05739 .02831 .01056 01100 .00481 ,00886 01141 .01050 .03285
(-.20707) ( -.15055) { -.02948) ( -.07546) ( -.00223) { .06856)( -.01577) ( .01930) ( .16842}
1.0 .5000 .02877 L01L%6 01183 .00577 01150 02864 01371 .01515 06374

P~
'

(-.15281) { -.07671) { -.00029) { -.00020) { .07630) { .15242)( -.00032) ( .03938) { .23253)
1.2 3982 01666 .00654 .01128 .00730 01949 04339 01307 01573 07496
( -.10868) { -.03469) ( .01588) { .04071) { .11707) { .19399)|( .00831) { .04728) { .25059)
1.5 .2832]  .00740 .00475 01024 01211 .03048 .06059 .01081 01426 .07787

L05874) { .01091) { .03192) { .08332) ( .15784) ( .23404)|( .01874) ( .05208) ( .25290)
2.0 1635 .00279 .00597 00775 .01769 .03937 07222 ,00679 .00986 06324
(-.01128) 1 .05013) { .04192) ( .11618) ( .18386) { .25857)|( .02136) { .04909) (.22417)

3010.3 3365 .01338 .00793 .00225 .00424 .00215 .00150 .00211 .00193 00215
{ -.10522) ( -.07628) ( -.01443) { -.04829) { -.02133) { .00451)|{ -.00683) { .00197) ( .04291)
0.7 .59301  .0L3lL .00748 00387 .00408 .00283 .00362 .00398 .00389 00774

—
'

.09921) ( -.06584) ( -.00973) ( -.03296) ( -.00062) { L0310 1( -.00431) (.00804) ( .06830)
1.0 .5000f  .0081L .00463 .00472 00353 .00480 .00845 T 00503 .00526 01247
.06803) ( -.03341) ( .o0145) ( .00125) ( .03%91) ( .07052)\( .00150) ( .01553) ( .08752)
.3983 .00543 .00348 .00451 .00379 .00642 .01141 00475 .00514 01217
L04758) ( -.01390) ( .00756) ( .02010) { .05438) { .08888)[( .00460) ( .01827) ( .09018)
1.8 .2832| .00308 .00274 00373 .00438 .00808 .01400 00378 .00425 01183
.02422) (.00691) ( .01333) ( .03870) { .07LL1) ( .10407)[( .007¢6) { .01960) { .08538)
2.0 L1633 00150 .00223 0023 .00443 .00824 .01383 © .00218 00254 .00778
.D0290) ( .02306) { .01632) [ .0S013) { .07821) [ .10724)1{ .00873) ( .01782) ( .06926)

—
r
' ] '
'

—
’

(0,.7)] 10l 0.5 .3365 .06944 .036%0 .00841 01583 .00520 .00370 .00789 .00643 02064
.25320) ( -.17884) ( -.03925) ( -.10702) ( -.03826) { .02561) .01986) ( .01415) ( .13822)
.4930 .0527% 02516 .01031 .00937 .00484 .01078 01142 01109 .04680
20721 ( -.14040) ( -.02483) ( -.06477) { .00930) ( .08124)I{ -.01269) { .03012) { .20709)
1.0 .5000 .02840 01123 .01099 .00550 01132 .02857 01309 01519 .08109
.15241) ( -.07625) ( .00042) ( .00030) ( .07685) { .15300) .00045) { .04754) ( .27048)
.3983 01798 .00681 .01086 . 00665 01796 .04098 01268 .01598 .09481
11512) ( -.04066) ( .01406) ( .03508) ( .11156) ( .18849) .00758) { .05419) { .29093)
L2832 .00917 .00464 .01021 .01042 02739 .05615 01110 01532 .10247
.07185) { -.00052) { .02843) ( .07298) { .14825) ( .22489) L01497) (.05857) ( .30013)
2.0 1835 .00369 .00528 .00852 .0159¢ L0371 06976 .00800 01217 .09441

—
.
'

=
~1
.

—
.

r— —
wy r>
—

.

—

—
.
—

( -.02616) ( .03876) ( .03993) { .10736) ( .17942) ( .25380)}( .02057) { .05721) ( .28452)

30[0.5 .8365 .01412 .00831 .00283 .00445 .00239 .00198 .00273 .00253 .00524
( -.10682) ( -.07617) ( ~.01442) ( -.04632) ( -.01736) ( .01065)|( -.00712) ( .00475) ( .05980)

0.7 .6930 01277 .00727 .00418 .00406 .00307 .00419 00434 .00428 .01038

—
:

L09651) ( -.06269) { -.00915) ( -.02927) ( .00389) ( .03614) L0442} L .01072) ( .08434)
1.0 .5000{ .00832 .00479 . 00485 .00363 . 00485 .00844 | 00517 .00545 .01526
{ -.06873) ( -.03412) ( .00060) ( .00083) ( .03518) ( .06978)|( .00061) { .01721) (1 .10212)
1.2 .3983} 00599 00376 .00472 .00381 .00620 .0109 .00499 .00544 .01623
( -.08141) { -.01753) { .00587) { .01662) ( .0§101) ( .08B559) .00332) { .01961) ( .10514)
1.5 .2832)  .00377 .00300 00414 .00428 00774 .01345 .00426 .00482 01547
( -.03091) ( .00105) ( .01131) ( .03358) ( .06664) ( .10016)[( .00608) ( .02108) ( .10230)
2.0 .1635  .00208 .00250 .00298 00461 .00853 .01439 .00288 .00341 .01188
( -.00986) ( .01819) ( .01534) ( .04ma9) ( .07707) ( .10778){( .00808) { .02027) { .08915)

— —
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Table 2. Estimates of MSE’s and Biases under the Harris Loss

Prior for 8

(o) nlt o B(1,9) B(3,7) B(1,1) 85,5  B(7,3)  B(,1)

{0,.5){10]0.5 .8365 06181 03141 00563 01261 .00398 00371
’ ( -.23709) ( -.16263) ( -.00918) ( -.08172) ( -.02515) { .03%82)
0.7 .6930 04973 .02273 .01004 .00825 . 00547 01322
( -.20849) ( -.12935) { .00508) ( -.05194) ( .02322) ( .09533)
1.0 .5000 .02523 00974 .01358 .00660 .01588 03734
{ ~.13902) { -.05985) ( .0284¢) ( .01968) { .09909) { .17791)
1.2 .3983 01481 00624 .01402 .00951 .02520 .05355
.09748) ( -.02041) { .03971) ( .0814) ( .13766) { .21770)
1.5 .2832 . 00688 00556 .01295 .01517 03681 .07127
05058) { .02202) { .04925) { .09783) { .17530) { .25486)
2.0 .1635 .00294 00709 .00950 02053 04492 08155
.00643) ( .05751) ( .05182) ( .12633) { .19906) ( .27508)

] . ' [

30}0.5 .8365 | .01125  .00637  .00198  .00327  .00176  .0O16S
(09445} ( -.06545) { -.00252) ( -.03747) ( -.01059) { .01507)
0.7.6930 | .0L129  .00626  .00382  .00353  .00297  .00447
.08913) ( -.08535) ( .00297) ( -.02210) { .01055) ( .04255)
1.0 .5000 | .00726  .00428  .00SO4  .00375  .00568  .01007
( -.06041) ( -.02518) ( .01172) { .01009) ( .04534) ( .08053)
12,3983 | .00503 00347  .00491  .00427  .00748  .0131S
.04155) ( -.00724) ( .01576) ( .02740) ( .06232) ( .09747)
1.5 .2832 | .00301  .0029¢  .00409  .00493  .00909 01553
( -.02010) ( .ollel) { .01892) { .04402) { .07706) { .ll067)
2.0 1635 | 00158 .00243  .00257  .00482  .00R9%0  .01483
{ -.00076) ( .02564) ( .01911) ( .08319)  .08180) ( .11137)

(0,.7) 10{0.5 .83¢3 .09953 .02937 00664 01124 .0038S .00556
.23216) ( -.15575) ( -.00484) { -.08233) { -.01259) { .05236)
0.7 .6930 .04570 .02015 .01023 .00718 00611 .01588
{ -.19929) ( -.11975) ( .00939) ( -.04164) { .03454) { .10807)
1.0 .5000 .02484 .00940 .01302 .00633 01571 03729
.13860) ( -.05936) ( .02925) { .02022) { .09967) ( .17853)
1.2 .3983 .01589 ,00630 .01350 .00848 02352 .05099
.10351) { -.02595) ( .03876) ( .05291) { .13255) { .21255)
1.5 .2832 .00834 .00528 01297 01333 03366 .06685
.06263) ( .01149) ( .04760) ( .08813) ( .16665) ( .24661)
2.0 .1635 .00368 .00635 .01065 .01902 .04312 .07982
( -.02011) ( .04747) ( .05238) ( .11920) ( .19422) ( .27198)

' .

—
‘.

—
'

— —_— —_
’ ' )

301 0.5 .836S .01195 .00677 .00257 .00353 .00210 .00230
( ~.09607) ( -.06524) ( -.00193) ( -.03527) ( -.00625) { .02173)
0.7 .6930 01106 .00616 .00417 .00361 .00331 .00516
{ -.08673) ( -.05245) { .00336) { -.01861) { .01472) { .04749)
1.0 .5000 .00746 .00442 .00516 .00384 .00572 .01004
( -.06113) ( -.02591) ( .01084) ( .00935) ( .04459) ( .07978)
1.2 .3983 .00552 00371 .00511 .00426 .00724 .01268
{ ~.04515) ( -.01064) { .01438) { .02416) ( .05919) { .09441)
1.5 .2832 .00363 .00316 .00452 .00484 00878 .01508
( -.02629) ( .00628) ( .01757) { .03944) { .07314) { .10732)
2.0 .1635 .00208 ,00272 .00323 .00509 .00933 .01561
{ -.00707) { .02148) { .01904) ( .05102) ( .08147) ( .11279)




