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I . Introduction

With the growing interest in so—called rank—order contract, its efficiency
aspect under asymmetric information between employer and employees is
being analyzed. The main concern of the related literature is to identify the
cases where the rank—order contract is more efficient than individual piece
—rate contracts in controlling the moral hazard problems.

One of the favorable circumstances for the rank-order contracts would be
where the observed outputs of agents are positively correlated, as has been
pointed out by Stiglitz & Nalebuff (1983) and Green & Stokey (1983).
Another important rationale for the rank—order contracts is the possibility
than the employer has an incentive to cheat his agent under a piece-rate
contract when the absolute performance level of an agent is unverifiable, as
has been argued by Bhattacharya (1984), Bhattacharya & Guasch (1988),
Malcomson (1984, 1986), and Lazear & Rosen (1981) . this argument is can
be proven as valid in many cases, particularly when the employer hires
more than one agent and when production process is not sufficiently sepa-
rable for an unbiased estimate of each employee’s own contribution to
output to be made verifiable

In this paper, it is assumed that for the above-mentioed reasons, emplyers
offer contracts that are based upon the rankings of performances of agents.
In particular, the model focuses on a set of simple rank-order contracts that
pay two different wage levels to the agents in the same contest, since this
type of simple contract represents a promotion scheme we can often observe
in reality, This paper will then analyze the efficiency of a certain type of
simple rank-order contract under asymmetric information about the agents’
effort levels (moral hazard) and under asymmetric information about their
ability levels (adverse selection) .

Lazear & Rosen(1981) have shown that a rank—order contract they have
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designed cannot yield the first-best outcome under both moral hazard and
adverse selection even when agents are resk-best outcome under both moral
hazard and adverse selection even when agents are risk-neutral. And
Bhattacharya & Guasch (1988) suggested a particular form of rank—order
contract under which different types of agents play against the standard set
by the performance of the agent of the lowest ability. This, however, is
hardly observable in reality.

Despite their excellent analysis of some important aspects of rank—order
contracts, the contest they designed is of a special type, in which there are
only two agents and one of them is always penalized (or given a prize) . then
one may ask how the nature of a rank—order contract would change as the
fraction of the contestants being penalized varies

This paper deals with this very issue, and shows that as the fraction of the
penalized decreases (together with an appropriate increase in the size of
penalty), the first-best efficiency is more likely to be achieved under both
moral hazard and adverse selection, The two first-best results under the
two informational asymmetries are established : i) when agents are risk
-neutral, in which case, there exists a first-best rank-order contract that
imposes a certain level of penalty upon a certain fraction of the contes-
tants ; ii) when agents are risk-averse, where the first-best outcome can
be approximated arbitrarialy as the fraction of the penalized gets smaller
(and as the penalty gets larger appropriately) .

This first-best result may advocate the promotion structures we can
observe in some countries such as Korea and Japan, Where the fraction of
the demoted in the group of a given rank is relatively lower than that of the
United States. ! M. Aoki(1988) argued that in Japan, the demoted often
gets separated through the pressure from his supervisor and peer group, and
that the financial penalty for the midcareer separation is substantially high
due to the disadvantageous treatement in the separation payment, the

stigma effect that follows the few demoted, and few job vacancies for the
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midcareer agents, 2)

Another important implication can be drawn from the efficiency of the rank

—order contracts that penaliges smaller fraction of the contestants heavily ;
a manager who hires a great unmber of workers could use a set of the
efficient rank—order contracts to comply with the union’s demand for pay
equality for job equality without affecting adversely the incentives of agents
under the two informational asymmetries. This is because then different
types of agents self-select by choosing different rank—order contracts, and
because only a small portion of the contestants under each contract is paid
lower wages. In other words, the demand for equal pay for equal job may
not be incompatible with the incentive pay structure under moral hazard and
adverse selection on the part of workers. This may shed new light on the
relationship between pay equality and incentives.

In the next section a basic model is outlined and a particular type of rank
-order contract is suggested. In sections 3 and 4, this type of contract is
shown to resolve the two informational problems efficiently when agents are
risk-neutral and when agents are risk-averse, respectively. And this first
—best result is extended in section 5 to the case where there is a privately
informed common shock among the agents in the same contest, which is

followed by some concluding remarks.

II. Model

Consider a competitive employer that hires an agent who can produce
output Q in the following way.

Q=Vyg,

where g is the level of effort chosen by the agent. The utility function of an

agent of ability z is assumed to be additive in income x and dffort y :

226



U, u;2)=u(x)—C(u ; z),

whereC” >0, C, <0, C'uﬂ>0andC”Z<0. (1)

The utility of income u(X) can be linear in x or concave in X. Note that,
as in Lazear & Rosen (1981) and others, different types of agents are
characterized by the different dffort cost functions C(u : z), not by the
different production functions, The type of an agent is distributed within an
interval [z 129 1, where z 1 $z4. Then the first —best outcome under
this circumstance would be the competitive outcome under perfect informa-
tion in which eadh agent of ability z chooses his first —best level of effort
u , such that

Vu' (Ve ,) =C(a, ;2
and in which each type of agent gets his first-best utility ;z(z) (:u(V,Z
. ) — Clu 2 -+ 2)) given the zero profit for the employer.
An employer, however, cannot observe the output Q. He also can neither
identify the abilith of its agent (ddverse selection) not abserve the effort

level that its agent chooses (moral hazard) . He can, however, observe the
effort level that his agent exerts in the following way :

y=p+te,

where y is the employer’s observation of the agent’s true effort level u, and
where the observational error ¢ is a random variable distributed with mean
zero given u . Let us denote the distribution function of & and its density
function by H( ) and h( ), respectively, and make a following standard
assumption on h( ).

Al: h(e) is differentialble, symmetric and unimodal at ¢ = 0.

We will also assume, for the purpose of simplicity, that ¢ is identically and
independently distributed across the agents, and that the support of the
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distribution of ¢ is infinite

A contract in this model should be based on the observations y’s of
performances of agents. One of the well-known contract is a piece-rate
contract under which pay for an agent depends on the observation of his
performance y only. Another type of contract is a rank-order contract
under which pay for an agent is based on the ranking of his observed
performance y among the performances y’s of the agents in the same
contest,

When agents are risk-neutral, there exists a certain type of piece-rate
contract that can support the first-best outcome despite these informational
asymmetries,3) Under the following circumstances, however, an employer
may be constrained to offer the first-best piece-rate contracts, and may
choose to offer rank-order contracts. First, it may be more costly to
measure the absolute performances levels for individual agents rather than
just to identify the rankings of performances among the agents, More
importantly, the effort levels (or the output levels) which agents choose are
only privately observed by their employer.

This is especially true for a large organization in which the performance
of agent is subjectively evaluated by the employer. In such case, the
employer may have incentive to cheat his agents under a piece-rate con-
tract. This sould bring both employer and agents to prefer a rank-order
contract to deter the employer’s adverse incentive.?) Another circumstance
under which an employer may want to offer a rank-order contract is where
there is a privately-informed common shock in the effort cost functions of
the agents in the same contest. As we shall see in the section 5, a rank-order
contract can solve efficiently the two informational asymmetry problems in
this case while some notable piece-rate contracts cannot .

Taking into consideration the above-mentioned circumstances, we will

focus on the set of rank-order contracts that are based upon the rankings of
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y; 's among agents. In particular, we will be dealing with the efficiency of
simple rank-order contracts that pay two different wage levels to the agents
in the same contest, because this type of rank-order contract would repre
-sent one of the most popular contracts that are used by firms - a promotion
scheme. So we will examine how we should design a contract that sets the
levels of high and low wages to be assigned to different rankings of perfor-
mances of agents in order to achieve the efficiency when confronted with
moral hazard and adverse selection problems simultancously.

To see the problem more formally, let us suppose that an employer offers
two wage levels W y and W L based on the relative performances of
agents, Then the expected utility of an i-th agent of ability z under a

contract R is going to be
(I—f(e T RDUW ) + fel e T RUWW ) — Cel 5 2)
=F—f(u', 0 7"iRD - Cle' ;2),

where F (fixed payoff) = u(W), D(penalty payoff) = u(W ) —u(W)

andf(u' ,ux ™" . R) is the probability that the i —th agent is penalized under
R when he chooses u« i and all the others choose M (= {ul, .-, ’ i_‘,
] i . # " }). The penalty probability f( ) is determined by {,ui Y i

and by the penalty rule p of the contract R that specifies the total number
n of agents in the contest and the number m of the agents in the contest upon
whom the penalty payoff D is going to be imposed. Thus the penalty rule p
can be described as (n,m). Let us denote by R((n, m), F,D) what I call a
multi-agent rank-order contract that pays fixed payoff F and imposes
penalty payoff D upon agents by a rule (n, m) .

Then the problem becomes what pair ((n,m), F,D) of parameters can
resolve the two informational asymmetry problems efficiently. Lazear and
Rosen (1981) suggested a two-agent rank-order contract that can induce
agents to choose the first-best effort levels under pure moral hazard (no
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adverse selection) . But their contract has a property that one of the two
contestants is going to be penalized, We will see later that because of this
property their contract cannot support the first-best outcome when hetero-
geneous agents have private information not only about their choices of
effort levels but also about their ability levels.

In the next two sections, we will see how a certain type of multi-agent
rank-order contract R((n, m), F, D) can yield the first-best outcome when
agents are risk-neutral, and how a certain type of the contract R((n, m), F,
D) can approximate the first-best result arbitrarily. Before proving these
points, here are some notations that will be used in this model :

R=R(p,F,D) = R((n,m), F,D)
R , » first-best R for z-type agent under pure moral hazard

ﬁz ; first-best R for z-type agent under moral hazard and adverse

selection
R = {Rz b2
R = {Rz }z

Il1. Risk-Neutral Agent

In this section, the utility of income for agent is assumed to be linear in X,
And without loss of generality, we can assume that u(x) = x. Then the

first-best effort level for z-type agent, u , » can be characterized by
V=Cu, . 2. @)

The'ﬁrst—best result will be established as Follows, first, in the subsection
(A) asetR , Of first-best contracts for different types of agents under pure
moral hazard will be characterized. Then in the subsection (B), the private-

ly informed heterogeneity of agents will be introduced to show that there
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exists a set R , of contracts for different types of agents such that once
these contracts are offered, different types of agents will self-select by

choosing different contracts.

(A) Set of First-Best Contracts R under Pure Moral Hazard

In this subsection we will assume that an employer can identify the type of
individual agent. Therefore we will only have to consider the incentive
problems of homogeneous agents (of the same ability z) under a contract R
in order to characterize R. The problem for an i-th agent of type z under a
contract R is

Max F f(u,z "1 ;R)D - C(x : 2). 3)
M

Since the optimal choice for each agent depends upon the choices of the
other agents, we will consider a Nash equilibrium choices of effort levels by
the agents as their optimal reactions to the contract. Then the question we
need to consider is the existence, the uniqueness and the symmetry of the
Nash equilibrium,

Instead of characterizing the restrictive conditions for the non-existence of
non-symmetric Nash equilibrium under a multi-agent rank-order contract
R I would rather choose to assume as in the existing literature that if the

unique symmetric Nash equilibrium {x , } exists for a group of z-type

z
agents under R, then each z-type agent chooses the same effort level x .
To check whether or not there exixts a unique symmetric Nash equilibrium
exists under R, we need to examine the problem (3) when all the other
agents choose the same effort levels ;1'. This requires specification of the
penalty probability f(,ui . . R) for the i-th agent in the contest who
chooses u i

Let us suppose all the agents other than the i-th agent choose the same
effort levels ;[, And suppose the resulting observed performances are

(Y12 ¥Y9s ¥ YVige =0 ¥y ). Wherey; :,u'+ej forj +i. Let us
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rearrange these y’s in the ascending order (y!, y?, .., vy ™1y such that y
I« yj +1 forj = 1, ---, n-2. Then, when the i-th agent who chooses his
effort level y s penalized it should be case that y;, <y " where y;, =
M 4o i - Now let us fix the agent fot the moment, say the k-th agent
(k#1i), such that y k = Y, . Then we can see that for a given y K

(n-2) !

Prye=yT e =e) = rmmy D
- 1 (n-2)
LHEMHO™ = (D o
H(-e)™1™H(e)™], (4)

because h(¢) is assumed to be symmetric at ¢ = (. Since (4) holds for every
possible & , , and since the probability that Vi <yy isH(-s + &) (where
s =l -4"), we have

(n-2) !

Priy; <y, ,v,-y™ = (- Tom) T (=) ! § % he)
HG-e)" 1™ H(e)™ ! H(-s + ¢)de (5)

Since any Y; (3#1i) could be y™, the penalty probability f(s ; R) for the i
-th agent will be

f(s,R) = (n-1) Pr(y; <y, y, =y™
= Fin,m) ¢ h(e)H(-e)" "™ H(e)™ ' H(-s + e)de (6)

where F(n,m) = m—l—(—rrr:;%()‘m—_l)'

properties of f(s; R) .

Then we can point out the following basic

Lemma 1

The followings are true about f(s: r) ;

i) f(0.R) = m/n

ii) f(s ! R) is decreasing in s and n, while it is increasing in m,
The proof of this lemma is delegated to the appendix, In the next lemma we
can establish another important property of the penalty probability f(s ; R)

232



that plays an essential role for the main result in this paper.

Lemma 2

Suppose that n > 2m, i.e., that more than half of the contestants are
penalized. Then the penalty probability f(s ; R) is convex over a certain
interval of s, [-c, c] for some ¢ > 0. If @(n,m ; 1) is the maximum of ¢
for a given (n,m), % > 0 and g}% < 0.

< proof >

f(s;R=Fn,m) &% L(e)H(-&)"™H(e)™h'(-s + ¢)de, (7

where L(e) = T}L()?I—(e—) Note that L (&) is symmetric at ¢ = (. We can

rewrite f (s ; R) as follows :

f(iR) =G, (5,(n,m)) + G, (s: (n,m)), (8)
where

Gy (s,(n,m)) = £% L(e)H(-e)" ™ H(e)™h'(-s + ¢)de,

G, (s,(nm)) = £% L(e)H(-&)"™H(e)™h'(-s + &)de.

Sinceh (-<s + &) > 0 for e < s, andh’(-s + &) < 0 fore > s, we have G
1 (s, (n,m)) > 0 and G2 (s; (n,m)) < 0. if we define G(s, (n,m)) = - G

1 /G, . then fﬁs((s;R) = (or £) 1. Since G(s, (n,m)) =
(‘?l /H(-e)"™H(e)™

n-m m’
Oy MEDTTHEO s | )Qs, e, (n.m))h (s + e)de
G(Sv (ns m)) = -

£ L(e)Q(s, &, (n,mMHh (-s + ¢)de

where

Q(s, &, (n,m)) = [?{%;}n-m[}}ii%))]m_

Note that | h'(e) | is symmetric at ¢ = 0 and that when &€ < (or >) s,
Q(s, &, (n,m)) is increasing in (or decreasing in) n and decrcasing (or

decreasing in) m. So we have
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oG oG .
n > ¢ and Y < 0 for any given s, (9)

Andifs = 0andn = 2m, G(0, (n,m)) = 1sothatf _(0;R) = 0. Soitis
clear from (9) that when n > 2m, f(0:R) > 0. Since every function is
continuous and differentiable in this model, there exists ¢ ( > () such that
f (s:iR) > 0forse[-c, c] whenn > 2m. Finally from (9) we have that

da da
5n >0, H< 0.

Lemma 2 shows that the penalty probability f(s ; R), which is depicted in
Figure 1, will be convex over the wider range of s around ( as smaller
fraction of the larger group of contestants is penalized. The following
lemma, which establishes the property of f(s ; R) in the limiting case where
n is a continuum, demonstrates that this range of s, [-a, a], can be made
as wide as we want, Let us denote by R(q, F,D) a continuum-agent rank
-order contract that imposes the penalty payoff D upon the fraction g of the
agents in the same contest, Then we have

Lemma 3

i) f(s;R(q,F,D)) = H(-d(q)-s), where q = H(-d(q)).

da (q ; H)
éq

iii) a(q:H) - o as q — 0,

i) < 0.

< proof >

If the unmber of the contestants is continuum, the frequency distrbution of
y’s for the agents who choose p' will be just the distribution of (,u‘ + €).
If (4  -d(q)) is in the 100q percentile from the bottom of the frequency
distribution of y’s, the penalty probability f(s; R(q, F,D)) for the i-th
1

agent who chooses ' (sothats = g
(YisPriy, < u - d(q)), which is equal to H(-d(q)-s).

-1 to generate yi (=u' +e
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By the assumtion A1, H(e) is convex for ¢ < (. Since d (q) < 0 and d
(q) - 0 asq — 0, we can get ii) and iii) .

The penalty probability f(s ; R(q, F, D)) under a continuum-agent rank
-order contract R{(q, F, D) is depicted in Figure 2. From the fact that q=
m/n and from lemma 3, we can see that the properties of the penalty
probability f(s ; R((n,m), F, D)) specified in lemma 2 will hold independent-
ly of whether n and m are finite or infinite. We can also see that a(n,m:;
H) can go to infinity as n goes to infinity for any given m.

Given the penalty probability f(s ; R), we can see that the first-order
condition for (3) when all the other agents choose the same effort levels ,u‘
becomes

-Df  (s;R) -C(¢' :2) -DF(n,m) ¢ L(e)Q" (S, ¢, (n,m))
h(-s + e)ae - C'(u' ;2) =0, (10)

where Q¥ (s, &, (n,m)) = H(-¢)"™H(e)™, So a symmetric nash equilib-
rium {u z } under R((n, m)F, D), if it exists, can be characterized by

D F(n,m)¢ %, L(e)Q" (0, &, (n,m))h(e)de - C'(n, :2). (11)

Then we can see from (11) that the symmetric Nash equilibrium {r,}
under R((n, m), F, D) is unique. And the second-order vondition for (10)
will be

DF(n,m)¢% L(e)Q° (s,e, (n,m))h’(-s + &)de + C* (u' :2)>0
(12)

for any s given (n,m,D), which is assumed to be satisfied. Note from

lemma

2 that the second—order condition (12) is satisfied locally and that it is
satisfied for the wider range of s as n gets larger and m gets smaller. Then

we can establish the following lemma regarding the existence of the Nash
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equilibrium (x , |

Lemma 4
Assume Al and (12). Then there exists a unique symmetric Nash equilib-

rium {# , } under R((n, m), F,D), which satisfies (11).

Finally, when the effort level 4~ chosen by all the other agents changes
such that |s| < «, we can see from lemma 3 that
ou i
ou
So far we have established that a multi-agent rank-order contract R((n,

0 < < 1. (13)

m), F, D) generates a unique symmetric nash equilibrum. And the symmet-
ric Nash equilibrium under R ((n, m), F, D) will also vary as the parameters
((n,m), F, D) change. Figure 3 shows how the symmetric Nash equilibrium
{u , } for a given pair ((n,m), F,D) of parameters is determined and how
{1 , } can change as one of the parameters, D, for example, changes.,
Now we are ready to characterize a set of first-best contracts R ( = (R
2 1, ) for different types of agents under pure moral hazard. The first-best
contract 1_22 for z-type agent under pure moral hazard is the one which
generates a symmetric Nash equilibrium g , Such that ;z , = }} , and the
employer gets zero profit, If R , = R((n,m),F . D . )» then the pair (n,

m), F,, Dz ) of parameters needs to satisfy the following conditions.
Cu, :2)=V =D, Fin/m)¢ 2 L()Q" (0, ¢, (n,m))h(e)de (14)
and

F, =Vu, + D, (15)

4

Once the penalty parameters ((n,m),D , ) are set by (14)for each z to
induce the agents to choose the first-best effort levels, the expected penalty
f(0;R z YD Z for z-type agent will be determined as (m/n)D , because the
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agents choose the same ;4 , under R z - Then the fixed payoff I 2 for him
under the contract can be set by zero profit condition (15) . But we can see
that there are many pairs ((n, m), Fz ,DZ ) that satisfy (14) and (15) for
each z. This implies that there are many sets R’s of first-best contracts {R

, }, under pure moral hazard. Let us denote by I' the set of R’s.

(B) Set of First-Best Contracts R under moral hazard and adverse selection

Clearly, a set of first-best contracts R under the two informatioal asym-
metries should be an element of I'. So the question is whether there exists
R & T that can satisfty the self-selection constraint under adverse selection

circumstance. Let us choose one R amng ', which is denoted by

R(=1(R,}, =(Rtt,,m,),F,),D,)},), such that
Rer
ﬁz :ﬁandmz =m forall z
a(mm;H) > X, where X = p, -z, (16)

where X is the difference in the first-best effort levels u 9 s P ; between the
highest ability (z 9 ) and the lowest abhility (z 1 ) agents. The set of contracts
R has two important properties. One is that the penalty parameters (n, m,
D) are the same for all types of agents by (14), (16) . This implies that once
different types of agents self-select, the expected penalty f(0 ; R z yD will
be the same for all types of agents,

This also implies that then the difference in the fixed payoff F , between
the two different Z’s will be exactly the same as the difference in the first
-best output levels V;z 2 ’s between the two different types of agents,
because the fixed payoff is determined by the zero profit condition (15).
This property, which simplifies the analysis, is not essential for the first
-best result in this paper, the other property, which plays an important role

for the first-best result, is that the penalty probability f(s ; R z) is convex
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in I orinsforse [-X, X] by (16) and by lemma 2, 3. Before proving the
first-best result for R, let us introduce the following lemma .

Lemma 5

Suppose that an agent of type z joins a contest under one contract of R,
where all the other agents choose x~ &[u 1 u 5 ]. Then the optimal effort
level x , for this agent will be in between x , and u .

<proof >
fu =p,,u, =n, shince {u, }is the Nash equilibrium under the
contract, If "+ u ,, then , €, ) wheny” >4, and ,
e (u, u , ] otherwise by (13) (see Figure 4) . This is because (z -z )
¢ [-X, X] over which the penalty probability under the contract is convex
ins. Q. E. D,

Now we are ready to state the main result of this paper.

Proposition 1
A set of contracts R defined by (16) yields the first-best outcome under the
two infotmational asymmetries when agents are risk-neutral .
< proof >

To prove this proposition, let us pick up any two different ability levels
z, and z b (zl =z, <z, Sz 9 ) and see whether an agent of ability
z; would have any incentive to change his contract from Ri to R k @
k = a,b) given that all the other agents self-select, where R i (or R k) =
RZ for z = z; (or = Rz for z = zy ). First, let us check the case for
an agent of ability z a - The expected utility EU a (R p ) that he can get

from choosing R p that the agents of ability z  Cchoose will be
EU, (Ry)

= Max By - f(u-iy 1Rp) D-Cluiz,)
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=Vuy +[fO:Ry) -flu, -uyy iR)HID-Clu, 12,) by (15),

where ;4 ; s the first-best level of effort for an agent of typei (i = a,b)
and u , is the optimal choice of effort level for the deviant. Note that
78 elu as ;‘b ] by lemma 5. Since f(u-g b - ﬁb ) is convex in g for u ¢
[#,. 2y ) and since D =-V/f (0; R} ) by (14), we have

EU, (Ry) < Ve, -Clu, 1z,)

<V;}a —C(;a;za) because;';a = Argmax {Vu - C(p ;2 )}
= EU, (R,), #
which is his expected utility from not deviating from R a - (See also Figure

5) Similarily, we can show that
EU, (R,)
=Max F, -f(uip, ,R;)D-Cluizy)

= Vu, + [f0:R,) -f(uy-u, :R,)]ID-Cluy i2y,) by

a

(15)
< Vuy -Cluy t2y)
< Vup, -Cluy izy)
=EU, (R,). Q.E.D.

The intuition behind this result comes from the fact that the penalty
probability f(u-u , ; ﬁz ) is convex in the effort level x4 of the deviant
agent, and from the fact that when his effort level is ;1 z the marginal
increase in the expected penalty is v, This implies that the expected reward
a deviant agent can get is less than the output he produces, so that his
expected utility will be less than the first-best utility that he could have
enjoyed if he did not deviate. so the convexity of the penalty probability

over the relevant interval plays an essential role for the first-best result. We
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have shown that it is the penalty rule of penalizing a small portion of the
conterstants (larger n and smaller m, or smaller q) that leads to the
£onvexity of the penalty probability over the relevant interval. Note that
the rank-order contract in Lazear & Rosen(1981) is just a R((n,m), F,D)
wheren =2 and m = 1. therefore the penalty probability under the contract
is not going to be convex over the relevant interval (i.e., @ = 0) (as was
shown in the proof of lemma 2)

Final remark. If the required portion of the contestants that is to be
penalized is small, then the required penalty needs to be large to induce
agents to choose the first-best effort levels. In this case we may have to
worry about the situation where the required penalty payoff is larger than
the fixed payoff and where agents are constrained by the imperfect capital
market. If the unemployment rate is positive, however, an employer can
fire the agents of lower performances, which can make the actual penalty
higher than the fixed payoff as in Shapiro & Stiglitz(1984) _5) But then the
first-best outcome is not going to be attainable any longer. Thus the
constraint of the infeasibility of some large penalty may limit the scope of
the first-best result in this model. It is shown in the next section, however,
that if u(x) is concave and u(x) —» -0 as x — () so that the feasibility
constraint diappears, we can approximate the first-best outcome arbitrarily
by a certain from of continuum-agent rank-order contract R(q,F,D).

IV. Risk-Averse Agent

Let us suppoes that the utility function of agent is additively separable in
income and effort, i.e.,

Ulx,u 3 2) = u(x) - c(u; 2),

where C(u ; z) satisfies the previous conditions, and u” > 0, u "< 0. In
this case, the first-best effort level ; , and the first-best utility level (given
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the zero profit condition) O z for the z-type agent will be
Vu' (Vi) =C @, :2),

0, =u(Ve,)-C, :2). 17)

4

It has been established that as long as the employer’s observation of the
agent’s performance entails an error €, the first-hest outcome cannot be
supported even under pure moral hazard when u( ) is concave. Mirrless
(1974), however, showed that under some conditions, there exists a con-
tract yielding the outcome that approximates the first-best one arbitrarily
under moral hazard context. We will be dealing with in this section whether
there exists a multi-agent rank-order contract that can achieve the Mirr-
less’ result of the almost-first-best outcome when we have both moral
hazard and adverse selection problems simultancously. It should be noted
that it is not obvious whether the Mirrless’ result holds under both of the two
informational asymmetries although it is true either for moral hazard case
or for adverse selection case. This is because the size of penalty to induce
the first-best effort level from agent may not be sufficient for the self
-selection constraint among different types of agents to hold. In other
words, moral hazard problem imposes additional constraint upon the set of
contracts that should solve the adverse selection problem as well,

As in Mirrless(1974), I will assume the following.

Bl: u(x) » -0 asx — 0.

This assumption B] enables us to set the penalty in terms of utility as large
as possible without worrying about the capital constraint of agents under
imperfect capital market,

Since the relevant penalty probability needs to be very small in this case,
we are going to have to focus on the case where the size n of the group is

very large or a continuum, i,e., on the set of continuum, -agent rank-order
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contracts R(q, F, D). Let us consider a set of these contracts R( = {R,}
: = R, ,F,,D,)) such that

a, :qo for all z
h(-d@®)D, = Vu'(Va )
F, =u(Vg,), (18)

where q0 — 0 (or d(qo ) — o). Given q0 , the penalty payoff DZ is
determined so as to induce the agent of type z to choose ;1 , in the symmet-
ric Nash equilivrium under R 2 as we can see in (18). Note that since q 0
is very small D , should be very large, which is possible by B1. And the
fixed payoff F , Isset just equal to the utility of the first-best output V; . -

Let us assume the following condition .

. lim h(-d) _
BZ . d 00 H ('_d) -

In fact, the assumption Bl and B2 are what Mirrless(1974) requires for the
almost-first-best result under pure moral hazard. Since
_ Vu'(Ve,)
*  h(-d@?))’
we have by B2

H(-d(q?)) D, -0 (19)

since qO approaches zero. Then the expected utility of a z-type agent
under RZ , EUZ (ﬁz ¥, will be

EU, R,) =u(Vk,) - H(-d@’»D, C&, ;2
-0, by (19).

Also the expected profit of the employer is approximately zero because the
expected penalty
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H(-d(q?)) (V,:lz -W,) — 0 sinceq? -,

where u(sz ) - u(WZ ) = Dz .So the set of contracts R achieves the
almost-first-best outcome under pure moral hazard given Bl and B2,
Then the remaining question is whether the set of contracts R can satisfy
the self-selection constraint when an individual agent has private informa-
tion about his ability level . Let us introduce another assumption B3, which
can support the almost-first-best result when we have both moral hazard

and adverse selection simultaneously .

B3 : dl—]fr(:o h_ﬁﬁi%ﬁ)_ = |t] forany x e [0, X],

where t = Max {Vu”(b)/u (a) | a,b e [V,Z1 , Vu o 1} and X =;¢2 -z
1 - This assumption implies that over the relevant region the curvature of H
() is greater than that of u( ). Since t and X are bounded and x > 0, any
distribution which has the property that h(-d)/h(-d) — oo asd — oo will
satisfy B3 by Al. And note that any normal distribution satisfies this

condition. Now we can establish the following.

Proposition 2

Assume Al and Bl-3. Then a set of contracts R approximates the first
-best outcome arbitrarily both under moral hazard and under adverse
selection when agents are risk-averse .

< proof >

Now consider the two types of agents-agents of low ability z 4 and agents
of high ability z b - Suppose that initially low ability agebts choose R a (=
R , forz a type) and high ability agents choose R b (- R , forz b type).
And suppose that an agent of low ability agent tries to choose R p - The
expected utility EU a (R p ) that he can get from changing his contract to R
b IS going to be
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EU, (Ry) = Max u(Vay,) - H(-d@®)-(u-2, ID, - Clu:z, )
]

=u(Vuy) - HEd@)-(u, -2y Dy -Clu, iz,)
=u(Ve ) -Plu, iz,),
where u a is the optimal choice of effort for the deviant under Rb' and
Pley) =uVe ) -uVuy) + H(-d@®)-(u, 2, D, .
Note that 4 a € [z as P p ] as befote. Since
P(ey) =0

and
h'(-d@®)-(u , -2, ))

P =VZ u"(Vu )+
(e 3) u” (Ve , ) h(d@0))

Vu (Vi) > 0 by
B3,

P (4 a) =0forp, < /:b , which implies P (u 4) < ;‘b because
H(-d(q?))
h(-d(q?))

Thus we have

P(uy) = Vu' (Vi) 2 0.
EU, Ry) <u(Vu,)-Clu, :2z,)
< u(Vp,) Cu, iz,)
~EU, R ).

Next when an agent of type zy devoates from R p to R we have

a’
EU, (R,) = u(Vi,) - H(-d@")-(uy, -2, DD, - Clry, i2zy)
~u(Vi,) - Cluy, ;zy,) since uy > &, and H( )D, =0
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<u(Vey) -Cluy 1zy,)
~ EU, (Ry),

where x| is the optimal choice of effort for the deviant under R a- QE
D..

What keeps a low ability agent from deviating to high ability contract is
the fact that the expected penalty payoff for deviant is greater than the
difference between the fixed payoff u(V;} p ) under the high ability contract
and the utility u(Vy a ) Of the output Vg a Prodced by the deviant.® This
is made possible by the assumption B3, which makes the curvature of H( )
greater than that of u( ) without affecting the agents’ choices of effort
levels. Note that if it were not for moral hazard constraint, or if it were not
for adverse selection constraint, we do not need the additional assumption
B3. Without moral hazard constraint, we couldjust set Dz to be high
enough to get the first-best self-selection, as is in Nalebuff & Scharstein
(1987) . In fact, proposition 2 generalizes the Mirrless’ result to the case
where we have both moral hazard and adverse selection simultaneously,

The above proposition also has an interesting implication. Suppose a large
group of heterogeneous workers forms a union. Suppose, for simplicity’s
sake, that there are only two ability levels ), 2z,. The number of
workers for each type is n,, n,, and an employer does not know an
individual type of worker. Suppose the union has a utilitarian objective
function 7 such that
1 9 2

. ey
WU, i UZ ) = ! "1+ b (20)
n] n2

where U ll is the utility of i-th worker of type z 1»and U 12 is the utility of
i-th worker of type z, If the individual utility function is concave in

income, the union will demand for equal pay for equal job(equal contract)
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as well as for pay increase to maximize its welfare. It has been believed,
however, that equal pay would not give agents sufficient incentives to work
hard and that high ability workers wold be adversely affected by the equal
pay structre because it could not sort out different types of workers (Lazear

(1989)) . Here we can establish the following proposition .

Proposition 3

Assume B]1 —B3. Suppose that a union has a continuum umbers and gas
an objective function (20). Then a set of contracts R (—{R1 , R o ) will
achieve the almost —first —best welfare level for the union given the zero

profit for the employer,

{proof>

From proposition 2 different types of agents will self —select by choosing
different contracts given R, and then choose their first—best effort levels
Iz 1 ; 9 - Then a small portion q 0 of the agents in each contest is going

to be penalized very heavily. The resulting welfare for the union will be
W(Ul,--,U%,--: R)
= [uVk;) —a’ D} —CG, 5z )] + [u(Vz,) - q°
D, —Clzy i2y)]
= [uVe ) =Clay sz )] + [u(Va,) — Cu, i2,)],
(since q° = H(-d(q?)) and D; =Vu  (Vi; )/h(-d@?)))

which are the sum of the first —best utility levels for the two types of agents.
Q.ED..

The proposition 3 implies that under R, there is no conflict between the
union’s demand for pay equality, and the incentive pay structure under the

two informational asymmetries, although many believe that the conflict

does exist.
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V. Common Shock § Among Agents

An important case where employer prefers rank — order contracts to piece—
rate contracts—wich is formulated in Nalebuff & Stiglitz(1983) and in
Green & Stokey (1983) —, is where there is a common shock 8 in the outputs
of agents or in the effort cost function C(.). Let us suppose that there is a
common shock # among the agents in the same contest such that the effort
cost function C(,u . z, @) satisfies (1) and

Cg >Ceﬂ>0forallz, (21)

Condition (21) impiles that high 6 means more difficult work environment .
Suppose that after he enters the contest each agent in the same contest has
preivate information about 8. And let 8 be distributed within the finite
interval [ 4 1> ] 9 ] with the distribution function F(8), which is a common
knowledge. Then the first —best effort level u(z, 6) for the agent of type z
given # can be described by

Vu  (Vi(z, §)) = C,luiz0). (22)

So by (22) u(z, 8) decreases as 8 increases. And the first—Dbest utility O 2
for the type z agent is going to be

0, =uVk(@) —E, {Caz8 ;2)},
where x (z) =E0{;(Z, 8)}.

If an employer uses a quota scheme, which is a piece —rate contract that
offers two levels of wages based on individual y; ’s the first —best outcome
under pure moral hazard would not be achieved even when agents are risk —
neutral. Suppose, for example, that 8 turns out to be low. Then the first —
best effort level Iz (z, #) will be high by (21) and (22) . Since the minimum
performance level that the higher wage is paid for by the quota—scheme is
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set independently of 8, each agent would choose the effort level lower than
u(z, 8) . In the next two subsections, it will be shown that certain types of
multi—agent rank —order contracts can achieve the first—best outcome

both for the risk —neutral agents and for the risk —averse agents.

(1) Risk—Neutral Agents

In this case, we can set without loss of generality u(x) to be x. Then we
can redefine a set of contracts R to be the one that satisfies (16) except that
the fixed payoff Fz isequal to (Vu(z) + f(0 ;R z yD) insetead of (Vu , t
f(0: Rz )D) and that a(n,m ; H) » X", where X =,2}(z2 ,61 ) — ;(z 10
6, ) . Although all the parameters of R , do not depend upon 8, each type
of agent will choose the first—best effort level x (z, 8) for each # under pure

moral hazard because
C# (u(z,8) ;2,0) = f (O;Rz ) D = V for given 4.

Now let us check whether R satisfies the self —selection constraint, Suppose
that initially each type of agent chooses the right contract ﬁz . And
suppose low ability z 4 agent deviates to high ability(zb ) conract R b -
Since f( ) is convex in s by lemma 2, his expected utility under R p Will be
EU, Ry) =E,[Vil(zy,.0) + DE [f(u(z,,0) — (2(zy.0) ; Ry)
~f0:R b) —E {Clutz,,0;2,,60)

CEg{V,z,.0} - Eolu(z,.0:2,,0)

M
because D = — V/f, (0:R})

CE {Vu(z,.0) —E iCr@z,.0)
- EU, R,),

where g (z a » 8) is the optimal choice of the effort for the deviant under R
b given #. Simiarily we can also show that high ability agent would not
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deviate, Thus we can state the following.

proposition 4

Suppose that there is a privately—informed common shock among the
agents in the same contest such that the effort cost function for the agent
satisfies (1), (21). Then the set of cdntracts R can achieve the first—best
outcome under the two informational asymmetries when agents are risk —

neutral .

(2) Risk— Averse Agents
Assume B1—B3. And let us redefine a set of contracts R (—{R z }z ) to
be the one such that

a, :(10 for all z

h(-d@®)D, = Vu'(Va(z))
F, = u(Vu(2)), (23)

where q 0 _ 0. Then we can see that under pure moral hazard each type of
agent chooses his first —best effort level for any given 8, and that each type
of agent almost gets his first—best utility by B2 because

EU, (R,) = u(Va(2) —E,{C(u(z,0) ;z.6)}.

To see whether R satisfies the self —selection constraint, as in the proof of
proposition 2, let us consider the two first —best contracts R as R b for z
2 —type and z, —type agents, respectively. Then suppose a z a —type
agent changes hs contract to R p - Then his expected utility under R b EU
a (Rp), will be

EU, (Ry,) = E, [u(V(zy,)-Dy, Hi—d(a,)—(u(z,,6)

~ulzy ,0)-Cluz, .0 :2,.0]
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=u(Ve(z,))—E4{Pu(z,,60) :F 4 {Clu(z, .0z, ,0).
where P(u(z ,,8) ; F(8) — u(Vu(z,)) —u(Vu(zy,)) +Dy
H{—-d(ay)—(u(z,,0) —u(zy,0)}.
P(u(z, ,8) ; F(8) >0 because then u(z,) = u(z, ). Also we have

P (u(zy,0) i F(®) = Vu' (Vu(zy, )F(8) — Vu' (Vu(zy))
h(~d(q?
—(—q—oif(ﬁ) =0 forall @,
h(-d(@?))

and

P (u(z,,6) i F(8)) =[V? w (Vu(z, )(6) — Vu (Va(zy)

h(—d(q?)—-a)
————— 11(6) > 0 by B3,
h(—d(q?)

where A — ,u(za,ﬂ)—;(zb,ﬁ) ¢ 0. These imply than P(u(z,,8) ' F
(8)) > 0 for any 6 since u(z ,,8) < u(z b+ ). So it follows that

EU, (Ry) <u(Vu(z,)) —E4(Cuz,.0):2,,0}

* a’
¢EU, R,).

These arguments have established the following proposition,

Proposition 5

Suppose that there is a privately—informed common shock among the
agents in the same contest such that the effort cost function for the agent
satisfies (1), (21). Then the set of contracts R defined in (23) can approxi-
mate the first—best outcome under the two informational asymmetries

when agents are risk —averse
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VI. Concluding Remarks

In this paper, a type of multi—agent rank — order contract is analyzed. It
is shown that a contract that penalizes the smaller fraction more heavily is
more likely to achieve the first—best efficiency under both moral hazard
and adverse selection. The first —best outcome under the two concurrent
informational asymmetries can be supported by a milti —agent rank —order
contract when agents are risk —neutral, while it can be approximated
arbitrarily as the fraction of the penalized gets smaller (together with an
appropriate increase in the penalty) when agents are risk—averse, The
result in Mirrless(1974), when extended to the two concurrent informa-
tional asymmetry circumstances, is shown to support the latter finding.
These first—best results are shown to continue to hold evern when thd
agents in the same contest are faced with a privately —informed common
shock . |

A couple of interesting implications can be earned from these findings.
First, the efficient contracts considered in this paper are consistent with the
current promotion structure within a firm in several Asian countries
(Korea, Japan). In these countries, the promotion rate is relatively high,
while the cost of not being promoted is also high as Aoki(1988) indicates.

Although there could be various other explanations of the current promo-
tion structure in these countries, the results in this paper disclose the
efficiency of this structure in controlling various incentive problems on the
part of agents. Second, this type of contracts enables a manager of a large
grop of workers to deal effectively not only wih the incentive problems of
individual workers to deal effectively not only with the incentive provlems
of individual workers but also with the union’s demand for pay equality .
This implication contradicts to the existing belief that the pay equality
demanded by union would adversely affect the incentives of workers. In this

respect, this argument probably would shed a new light on another aspect
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of the relationship between the pay equality and the incentive pay structure
under the two informational asymmtries.
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Appendix

Proof of Lemma 1
i)
fOR)
- Foum) [ h(e)H(-e)* ' =H(ey™'B(e)de
- Fnm) [ e H(-e)*! " H(s) "de
- F(M)[[_I_H(_g)n-**g(;)-[ + f " h(-e)H(-e)" ¥ " H(e)™de
m+1 R »

= Fomy= == [ () H(-e Y "H(e}™de

T om
- Fam)B-l-mn-2-m f “M(e)H(-e )" H(z)™de
m+l m+2 J--
- \A-1-mn-2-m 1 r- R
Flum)=— R 2R = — [ W) H (-
- yal-m 11
o m+1 n-1n
-
.

ii)

£&R - -Finm)[ " We)H(-ey~=H(e)* W(-s+e)dz < 0.

Since f(s;R) + (1-f(s;R)) = 1, we have for any (n,m)

Foum) [ TKMOH-e "HE'ds - 1. )
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Now let us define f(n,m) such that

Fn-1,m) - B(nm)F(n,m).

Then

As:R((n-1,m),F,D))
- F(n-1,m) f_:h(z)H(- z)"""H(z)""H(—s; t)de

- F(nm) f_:h(z)H(-z)“”"‘H(z)""B(n,m)H(-s+z)dz since B is independent of ¢
> Fnm) [~ h(e)H(-ey* " *H(e)* 'H(-e)H(-s+e)de

since [ :h(:)H(-z)""-"H(c)""B(mm) = [THe)H(-e)* > "H(e)*'H(-2)de by (4)
= As;R(nm),F.D)).

Similarily let us define p’ (n,m) such that

Finm-1) = p'(nm)F(nm-1).

Then we have

fis;R(n,m-1))
- Fnm=1) [~ h(e)H(- )" H(ey H(-s+e)de

= Fonm) [ HE)E(- ey =H(e)"" B (nm)H(-5+ e)de

< Fim) [ o) H(-er " "H(eY" H(e)H(-s+e)de by (4)
- AsRum).
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1Y)

2)

Footnote

A supporting evidence for this belicf, which is suggested by M. Aoki
(1988), is the fact that the separation rate fot the midcareer employees
in Japan is relatively lower that of the United States.

Aoki(1988) argued that the midcarcer separation involves substantial
penalty in Japan for the following reasons: i) low separation pay-
ment, the amount of which varies considerably with the lenth of tenure
within a firm, ii) few job vacancies for the midcareer agents since an
employer values highly on the firm-specific human capital of an agent,
iii) the reputation effect, i.e., that of conveying negative information
about the job-changer in his midcareer to the potential employers. |
think that Aoki’s argument is also true in Korea to a large extent.

3) A simple form of the first-best piece-rate contract is the one that pays an

agent as much as his observed performance Vy.

4) If pays are based upon the rankings of performances of agents, the total

5)

6)

payment by an employer is fixed so that the adverse incentive on the part
of employer will disappear, as has been pointed out by Bhattacharaya
(1984) .

Using the arguments in Shapiro & Stiglitz(1984), we can see that the
unemployment pool as well as D can make the actual penalty sufficient
enough to control the incentive problems of agents.

Although the deviant can expect the higher fixed payoff u(Vyu p) by
deviation, his total payoff (fixed payoff minus penalty payoff) will be
less than the utility of the output Vu a Produced by him,

7) If the size of the union (n ; + n,) is taken as exogeneous, the union’s

objective function (20) is equivalent to the utilitarian social welfare

function
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objective function (20)is equivalent to the utilitarian social welfare funtion.

The funtion (20)is one of the most popular forms of the union objective that are

taken in the related literature.
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<Figure 1 >Penalty Probability f(s;R( {n,m),F,D)) when n>2m

<Figure 2>Penalty Probability f(s;R(q,F,D) )
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< Figure 3> Symmetric Nash Equilibria E, E’
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AC: Apenalty,

BC: Vis—Vu ,

<Figure 5> Penalty Increase for the Deviant
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