육용종계의 제한급이 수준과 생산능력(I)

이 정구

서 론

브로일러 생산에 이용되는 육용종계(P.S)는 과거보다 지속적으로 성장률이 높고 성육중이 크며 조기에 성숙에도 도달되도록 개량되었다. 따라서 종계 1수당 브로일러 병아리 생산수수로 나타내는 변식효율은 크게 향상된 반면에 제한 증가로 인하여 유지사료요구량이 많아졌고, 성숙 단축으로 인하여 부화용 중량은 무작정한 소란을 많이 생산하므로 조성추 생산비를 증가시키고 있다.

이러한 부담을 방지하기 위하여 육용종계는 육성기에 양적 제한급이 프로그램을 적용하여 육성계의 과비를 방지하고, 성계의 폐사율 감소시키며 성중숙을 지연시키고 종단생산효율을 높이며 변식효율을 개선시키고 있다.

농가에서 육용종계용 병아리를 구입하면 병아리와 함께 종계장에서 종계사망관리지침서를 받는다. 이 지침서에는 육성기부터 사란기까지의 제한 사망관리 방법과 함께 부형별 표준체중, 표준사료급여량 및 표준 생산능력(산란율, 난종 등)이 제시되어 있다. 제한급이는 채종조건에 의해 성매가 좌우되기 때문에 병아리 부화시기, 계종, 사육기간의 환경조건, 사료의 영양성분 등에 따라 사육자가 프로그램의 일부를 수정할 경우가 많다.

그러나 실제로 육용종계에 대한 사망프로그램은 임의로 수정할 경우 많은 위험이 따르므로 이에 대한 기준지식을 여기에 소개하고 “마니육종회사”로부터 연구비 지원을 받아 수행한 실험의 연구결과를 제시하여 사육자가에게 도움을 주고자 한다.

I. 실험설계

(Ⅰ) 종계용 병아리의 구입
국내 3개 회사에서 시판하는 육용종계 병아리(P.
S)를 각 재종별로 얇게 40수, 수컷 50수씩 구입하였 다(1987년 8월 14일). 그중 2재종은 정상육용재종(A와 B 재종)이고 1재종은 암컷이 돼소종(C 재종)이 있다.

(2) 실험배치

실험사정으로 인하여 조생수 육수기간은 감질병사
에 몇 7주제까지 사육 후 각 재종 공히 4구리×4반
로 한 반복당 20~25수씩 육성산란계이자에 완
전임의로 배치하였다. 처리 내용은 육성기 및 산란
기 전기간 자유급여구(무제한구), 재중별 전기장중
에 맞춘 표준급여급여구(표준구), 표준급여의 95%
에 맞추어 사양한 재현급여구(-5%구), 표준급여의
105%에 맞추어 사양한 재현급여구(+5%구)로 설
계하였다.

(3) 일반관리

입추후 3일간 24시간 계숙접들을 실시하였고 그
이후부터 2주정까지는 자연일조에 의해 사육하였
다. 7일령에 뉴콜[1,2]을 전염성기관지염(IB) 혼합
백신을 정안접종하였고 10일령에 부리자르기(디비
징)를 하였다. 2주령에 뇌척수성 AE과 계두(FP)
의 혼합백신을 접종하였고 3주령에 ND와 IB 혼합
백신을 뉴접종하였으며 5주령에는 감보로병(IBD)
과 전염성후두기관염(ILT) 혼합백신을 접종하였다.
12주령에 계두백신을 보강접종하였고 16주령에 뇌척
수협백신을 음수접종하였다.

사료는 시장 상업용 사료를 구입하여 급여하였다.
0~6주정까지는 육체전기 사료를 급여하여 초기발육
능력을 비교하였고 7~14주정까지는 추추사료, 15~
21주정까지는 대추사료를 급여하였으며 그 이후에는
종계산란사료를 급여하였다. 접종은 22주령에 14시
간 30분, 23주령에 15시간, 24주령에 15시간 30분, 25
주령부터 도태시까지 16시간으로 고정접종하였다.

사료급여방법은 0~3주정까지는 모든 처리군에
대해 자유급여하였고 4주령부터는 매일재현급여를
하되 각 처리구별 목표체중에 도달되도록 사료제한
수준을 조절하였다. 재종은 육성 전기간 매주 측정
하되 육수기간에 반복내 모든 개체를 측정하였고
육수기간에는 3회 째수가 되는 주령에는 전체체중
을, 기타 주령에는 표본 50%씩 측정하여 프로그램
의 제조과 비교하며 재종의 균일도를 확인하였다.

매일의 사료섭취량 평가수 등을 기록하였고 산란
기에는 산란수, 난중, 난질(연란, 파각란, 벼난황란,
장심란) 등을 조사하였다. 기타의 사료관리는 일반
관행방법을 따랐다.

2 육성기의 사료제한 효과

육용종계 빙아리를 육성기 동안 사료섭취량을 제
한할 경우 일반적으로 얻는 효과는 다음과 같다.

(1) 육성기간의 사료섭취제한은 재현급이 수준에
따라 성장속도 수입 내지 3~4주까지 지연시간한다.
(2) 사료제한은 성숙시 체중을 억제함으로에서방
망을 감소시킨다.
(3) 사료제한 수준이 너무 저나치지만 없으면 육성기 동안의 폐사율에는 영향을 미치지 않으며 산란기 동안의 성계생존율을 향상시킨다.
(4) 사료제한급어는 일반적으로 양적제한을 하기 때문에 일부 영양성분이 결핍될 수도 있다.
(5) 사료첨단취제한은 대개 육성기간의 사료비를 절감시키거나 성장속도의 지연으로 육실사료 급여기간이 증가하기 때문에 프로그램에 따라 육성비에 영향을 준다.
(6) 난중은 일반적으로 주령에 따라 변하므로 제한급어에 의한 성장속 지연은 자연히 초산난 산란율 증가시켜 중단생산율을 높인다.
(7) 육성기의 제한급어는 제한수준에 관계없이 일정 주령까지의 산란수에 크게 영향을 미치지 않는다.
이 실험에서 얻은 육성기의 육성성적은 다음과 같다.

(1) 생존율
3개 계층의 각 처리구별 육성기 및 산란기의 생존율은 (표 1)과 같다.

<table>
<thead>
<tr>
<th>계층</th>
<th>처리구</th>
<th>0-7주령</th>
<th>8-14주령</th>
<th>15-21주령</th>
<th>22-28주령</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>무제한</td>
<td>98.2</td>
<td>95.4</td>
<td>93.6</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>97.3</td>
<td>95.3</td>
<td>92.7</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>92.7</td>
<td>89.2</td>
<td>82.7</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>96.7</td>
<td>95.7</td>
<td>93.3</td>
<td>74.4</td>
</tr>
<tr>
<td>B</td>
<td>무제한</td>
<td>93.9</td>
<td>100</td>
<td>93.9</td>
<td>55.9</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>92.0</td>
<td>100</td>
<td>92.0</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>97.0</td>
<td>99.0</td>
<td>96.0</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>98.3</td>
<td>94.2</td>
<td>98.2</td>
<td>75.7</td>
</tr>
<tr>
<td>C</td>
<td>무제한</td>
<td>89.2</td>
<td>95.2</td>
<td>84.9</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>87.3</td>
<td>100</td>
<td>87.1</td>
<td>82.7</td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>84.8</td>
<td>98.7</td>
<td>83.7</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>93.9</td>
<td>87.7</td>
<td>97.6</td>
<td>83.4</td>
</tr>
</tbody>
</table>

정상체구의 계층 A와 B 그리고 해소제공 C에 서 각 계층 공히 무제한구 (자유급여구)는 사료제한 구와 비교할 때 육성기에는 생존율의 차이가 없으나 산란기에 따라서 인한 폐사율 증가로 생존율이 크게 높은 경향을 보였다. 대체로 사료제한 수준별 각구의 생존율간에는 유의적인 차이가 없었으나 육성기의 생존율이 높은 구는 정상의 생존율이 낮아지는 현상을 나타냈다.

(2) 성장율
각 처리구별 성장율은 (표 2)와 같다.
각 계층별 중개회사에서 공급하는 사양관리프로그램에 제시된 건장체중을 표준구로 하고 표준구보다 계층이 5% 높도록 제한급어 한 처리구와 5% 낮도록 제한급어 한 처리구의 실험실험에 맞추어 사양하였기 때문에 각 주령별 계층은 계획대로 제한급어 구간에 5%씩의 편차를 나타냈다. 표준구의 21주령 계층은 자유급여구에 비해 A계층과 B계층은 각각 54%와 56% 수준이었고 해소계통 C계층은 66% 수

원간양재 1990.4월호 93
표 2 사료급여 수준별 체중 (g)

<table>
<thead>
<tr>
<th>계층</th>
<th>처리구</th>
<th>4주령</th>
<th>9주령</th>
<th>15주령</th>
<th>21주령</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>무제한</td>
<td>1,569</td>
<td>3,131</td>
<td>3,904</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>1,085</td>
<td>1,384</td>
<td>2,225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>1,069</td>
<td>1,296</td>
<td>2,114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>514</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>무제한</td>
<td>2,878</td>
<td>3,725</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>2,194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>2,099</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>무제한</td>
<td>2,176</td>
<td>2,752</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>1,871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>1,818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>389</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 사료섭취량

육용종계가 산란기간 동안 최대의 산란능력을 나타내기 위해서는 육성계가 24주령에 평균 2.5kg의 체중에 도달되고 안테이산란율 5%에 도달되도록 사료급여 프로그램이 설계된다. 육용종계의 육성계는 높아도 8주령 이전에 사료제한을 실시하는 것이 쇼 증가에 유리하다. 육성기의 사료 중 에너지수준은 육수사료는 2800 ME Kcal/kg, 육성사료는 2860 ME Kcal/kg 를 권장하며, 사료 중 단백질 함량은 육수사료 20%, 육성사료는 8~12%로 주령이 증가할수록 단백질 함량을 낮추는 것이 경제적이다.

게관의 평균체중이 원조체중보다 높거나 낮으면 그 다음 주의 사료급여량을 증가시키거나 줄여야 한다.
다. 예를 들어 채종이 1% 초과되면 사료급여량은 1 % 낮추어 준다.

각 계종별 육성기의 1일사료급여량을 (그림 1) (그림 2) (그림 3)에 나타냈다.

각 처리구별 성장단계에 따른 수당 사료섭취량 누계를 (표 3)에 제시하였다.

육성기(0-21주령) 동안 자유급여를 한 경우 1수당 사료섭취량누계를 계종 A와 B는 비슷한 17.1kg와 17.9kg였으나 계종 C는 13.3kg으로 정상계종의 75 % 수준았다. 계종 A에 비하여 계종 B가 육성기의 사료섭취량이 약간 더 높으나 표준구의 섭취량은 무제한구의 약 54% 수준으로 비교한 경향을 보였으며 계종 C는 61% 수준으로 나타났다. 사료한 사료섭취량비로 해서 표준구보다 체구가 5% 초과하도록 사육한 구는 육성기 동안 약 4%의 사료섭취량이 증가되었고 반대로 표준구보다 체중이 5% 미달되도록 사육한 구의 4% 절감하였다.

<table>
<thead>
<tr>
<th>계종</th>
<th>처리구</th>
<th>0-7주령</th>
<th>8-14주령</th>
<th>15-21주령</th>
<th>22-28주령</th>
<th>29-35주령</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>무제한</td>
<td>7.82</td>
<td>7.00</td>
<td>17.11</td>
<td>49.76</td>
<td>48.38</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>2.68</td>
<td>4.59</td>
<td>9.56</td>
<td>47.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>2.54</td>
<td>4.35</td>
<td>9.19</td>
<td>46.59</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>무제한</td>
<td>8.46</td>
<td>7.26</td>
<td>17.88</td>
<td>48.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>3.06</td>
<td>4.64</td>
<td>9.87</td>
<td>44.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>2.87</td>
<td>4.38</td>
<td>9.40</td>
<td>43.98</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>무제한</td>
<td>5.87</td>
<td>5.92</td>
<td>13.26</td>
<td>34.44</td>
<td>32.67</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>2.70</td>
<td>4.18</td>
<td>8.43</td>
<td>32.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5%</td>
<td>2.67</td>
<td>3.99</td>
<td>8.15</td>
<td>31.98</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

산란기(22-64주령)의 수당 사료섭취량 누계는 자유급여구와 제한급여구간에 큰 차이가 거의 없었다.
이번 무제한급여구의 결과로 인하여 산란능력이 낮은 반면 제한급여구는 지속적으로 산란에 필요한 사료를 더 섭취하기 때문에 이러한 경향을 나타내었다. 그러므로 육성기에 체구가 큰 닭은 산란기에도 큰 체구를 유지하기 때문에 사료한 수준별 산란기의 수당 사료섭취량은 각 계종 모두 +5%구, 표준구, -5%구 순으로 육성체중이 클수록 산란기간의 사료섭취량이 약간 더 높은 현상을 나타냈다.

(다음호에 계속)