SOME H_P–THEOREMS FOR HYPERSURFACES

CHANG-RIM JANG

Let $M^n, n \geq 2,$ be an orientable compact n–dimensional manifold without boundary and assume $x : M^n \to R^{n+1}$ is an isometric immersion. Sometimes, x will be considered as the position vector of $M^n.$ For a globally defined unit normal vector field ν of $M^n,$ we call $p = <x, \nu>$ a support function of $M^n.$ Rotondaro Giovanni [2] proved that if H_p has a constant value $n,$ then M^n is a standard sphere centered at 0. (Here, H is the mean curvature function of $M^n.$) In this short note, we will prove Giovanni's theorem by some different methods. Some of the calculation in this note was inspired by computation in a paper by Gerhard Huisken[2].

1. Preliminaries

We need some definitions and lemmas. Many of them are due to [5]. ∇ denotes covariant differentiation on $R^{n+1},$ and ∇ denotes covariant differentiation on $M^n.$

DEFINITIONS.

(1) $h(X, Y) = - <\nabla_X Y, \nu>$ for X, Y sections of $TM^n.$ h is the second fundamental form of the immersion. $<,>$ means the usual inner product of $R^{n+1}.$

(2) For an orthonormal framing (e_1, \cdots, e_n) of $TM^n,$

$H = \sum h(e_i, e_i).$ This definition of H is independent of the framing.

(3) The Coddazi equations, for X, Y, Z sections in $TM^n,$ are

$$(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z),$$

where

$$(\nabla_X h)(Y, Z) \equiv \nabla_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).$$

Received January 8, 1991.
(4) The Laplacian Δf of a function f on M^n is given by $\Delta f = \sum g^{ij} \nabla_i \nabla_j f$, where (x_1, \cdots, x_n) is a framing of M^n and $(g^{ij}) = (g_{ij})^{-1}$.

(5) The norm of second fundamental form $|A|^2$ is given by

$$|A|^2 = \sum g^{ij} g^{kl} h(x_i, x_k) h(x_j, x_l).$$

Lemma 1.1. If $M^n \subset R^{n+1}$ is immersed, then $n|A|^2 \geq H^2$. Equality holds if and only if M^n is a sphere.

Proof. See [5].

Lemma 1.2 (Hopf's Maximum Principles). If a C^2-function f defined on $M^n \subset R^{n+1}$ has a strict maximum (resp. minimum) value at $p \in M^n$, then $(\Delta f)(p) < 0$. (resp. $(\Delta f)(p) > 0$.)

Proof. See [1].

2. Proofs of H_P-theorem

If $M^n \subset R^{n+1}$ satisfies the equation $H_P = n$, then we may assume $H > 0$ and $p > 0$.

Theorem 2.1. If M^n is compact and satisfies the equation $H_P = n$, then M^n is a standard sphere centered at 0.

Proof. We differentiate the equation $p = \langle x, \nu \rangle$ in an orthonormal frame e_1, e_2, \cdots, e_n on M^n. Then

$$\nabla_{e_i} p = \langle \nabla e_i, x, \nu \rangle + \langle x, \nabla e_i, \nu \rangle = \langle e_i, \nu \rangle + \langle x, \sum h_{i1} e_l \rangle = \sum \langle x, e_l \rangle > h_{i1} \quad (\text{where} \quad h_{ij} = h(e_i, e_j))$$

$$\nabla e_i \nabla e_j p = \sum \langle \nabla e_i, x, e_l \rangle > h_{i1} + \sum \langle x, \nabla e_j, e_l \rangle > h_{i1}$$

$$+ \sum \langle x, e_l \rangle > \nabla_j h_{i1}$$

$$= \sum \langle e_j, e_l \rangle > h_{i1} + \sum \langle x, h_{jl} \nu \rangle > h_{i1}$$

$$+ \sum \langle x, e_l \rangle > \nabla_l h_{ji}$$

$$= h_{ji} + p \sum h_{jl} h_{i1} + \sum \langle x, e_l \rangle > \nabla_l h_{ji}$$
Here we used again $p = \langle x, \nu \rangle$ and the Coddazi equation. (We assume $\nabla e_i, e_j = 0$ for all i, j.)

From (2) we obtain

$$\Delta p = H - p|A|^2 + \sum <x, e_i > \nabla_i H = H - (n|A|^2/H) + \sum <x, e_i > \nabla_i H = (H^2 - n|A|^2)/H + \sum <x, e_i > \nabla_i H \leq \sum <x, e_i > \nabla_i H$$

Since M^n is compact, p has a minimum at some point $q \in M^n$. And H has a maximum value at q. Applying the Hopf's maximum principles, we conclude that p is constant and $H^2 = n|A|^2$. This implies M^n is a standard sphere centered at 0.

Remark 1. If $M^n \subseteq R^{n+1}$ is embedded and satisfies the equation $Hp = n$, then we can directly derive the result by using Ros' inequality [4] $\int n/H \ dA \geq nV$ and the formula $\int p \ dA = nV$.

Remark 2. If $M^2 \subseteq R^3$ is noncompact and satisfies the equation $Hp = n$, we expect M is cylinder.

Remark 3. Gerhard Huisken [2] proved that if $M^n \subseteq R^{n+1}$ satisfies the equation $H = p$, then M^n is a standard sphere with radius \sqrt{n}. His computation may be applicable in several directions.

References

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea