ON EMBEDDED SURFACES WITH CONSTANT NONZERO MEAN CURVATURE

CHANG-RIM JANG AND SEONG-KOWAN HONG

1. Introduction

The mean curvature function H on an oriented surface S in R^3 is defined at a point p in S to be $H(p) = \lambda_1(p) + \lambda_2(p)$, where $\lambda_1(p)$ and $\lambda_2(p)$ are the principal curvatures of S at p. When H is constant, S is called a surface of constant mean curvature. In this paper, if S is a surface of constant mean curvature H, we call S an MCH-surface. We can (and will) assume $H > 0$.

We consider properly embedded MCH-annuli A, which are homeomorphic to the punctured unit disc $D\setminus O$ in R^2. Let $F : D\setminus O \to A \subset R^3$ be a homeomorphism. Then f will be a proper map and $F(y) \to \infty$ as $y \to 0$. Due to W. Meeks III [1], every properly embedded MCH annulus A is cylindrically bounded, i.e., A stays a bounded distance from one half infinite straight line. Recently, N.J. Korevaar, R. Kusner and B. Solomon proved that every properly embedded MCH-annulus is asymptotic to a Delaunay surface [2]. They also proved that if \sum is a complete properly embedded MCH-surface and has two annular end, then it is a Delaunay surface.

Modifying the method of three authors, we obtained some different results about properly embedded MCH-annuli. Also, we proved that if $S \subset R^3$ is a compact MCH-graph with $\partial S \subset x^3 = 0$ and if S has a point p such that $x^3(P) = 2H^{-1}$, then S is a hemisphere.

We need some notations and definitions. Many of them are due to three authors.

\begin{equation}
(1.1). \text{ For } 0 < R < \infty, P \in R^3 \text{ and given a unit vector } v \text{ the disc with center } P \text{ and normal } v, \text{ is defined by } D_{v,R}(P) = \{ y \in R^3 : \}
\end{equation}
\[|y - P| \leq R, \ (y - P) \cdot v = 0 \}. \] The solid half cylinder generated by \(D_{v,R}(p) \) and \(v \) is
\[C_{v,R}^+(p) = \{ y + xv : y \in D_{v,R}(p), \ x \geq 0 \}. \]

Due to W. Meeks III, if \(A \subset R^3 \) is a properly embedded MCH-annulus, then there exists \(C_{v,R}^+(P) \) such that \(A \subset C_{v,R}^+(P) \). In this case, We call \(v \) an axis vector of \(A \).

2. Compact MCH-graphs

In this section, we will prove that a compact MCH-graph with some property must be a hemisphere.

Proposition 2.1. Proposition suppose \(S \subset R^3 \) is a compact MCH-graph with \(\partial S \subset \{ x^3 = 0 \} \). Then \(|x^3(S)| \leq 2H^{-1} \). Furthermore, if \(S \) has a point \(p \) such that \(x^3(p) = 2H^{-1} \) or \(-2H^{-1}\), then \(S \) must be a hemisphere.

Proof. We may assume \(x^3(S) \geq 0 \). By the Cauchy-Schwarz inequality, the second fundamental form \(A \) and the mean curvature \(H \) satisfies \(2|A|^2 - H^2 \geq 0 \). On a graph, the (upward) unit normal \(v \) satisfies \(v^3 \geq 0 \). Combining these inequalities with the equations \(\Delta x^3 = -Hv^3 \) and \(\Delta v^3 = -|A|^2v^3 \) yields the differential inequality \(\Delta (Hx^3 - 2v^3) \geq 0 \) on \(S \). Since \(Hx^3 - 2v^3 \leq 0 \) on \(\partial S \), the maximum principle implies the same inequality on \(S \). The first result follows since \(v^3 \leq |v| = 1 \). Suppose \(x^3(p) = 2H^{-1} \) at some point \(p \in S \). Then \(Hx^3 - 2v^3 \) has an interior maximum at \(p \). The maximum principle implies \(Hx^3 - 2v^3 \) must be constant and \(\Delta (Hx^3 - 2v^3) = (2|A|^2 - H^2)v^3 \) is constantly zero. By continuity, we may conclude that \(2|A|^2 - H^2 = 0 \). Hence \(S \) is a hemisphere with radius \(H \).

Remarks.

1. The first part of Proposition 2.1 are firstly overserved by Serrin [3].
2. For the known examples, if \(S \) is an MCH-graph over a connected closed (not necessarily compact) domain in \(\{ x^3 = 0 \} \) with \(\partial S \subset \{ x^3 = 0 \} \), we expect \(S \) has the property mentioned in Proposition 2.1.
Constant nonzero mean curvature

Corollary 2.2. Let S be a compact MCH-graph with $\partial S \subset \{x^3 = 0\}$. If S is not a hemisphere, then $|x^3(S)| < 2H^{-1}$.

3. Properly embedded MCH-annulus

To prove our results, we need some argument which is similar to three authors'. Let A be a properly embedded MCH-annulus and let $A \subset C^{+}_{a,R}(q)$. We may assume $q = 0$. The axis vector a is parallel to positive x_1-axis.

Fix a plane $\Pi \subset R^3$ with unit normal v, which is below annulus A and is parallel to the axis vector a. Let L be the perpendicular line given by $L = \{tv : t \in R\}$. For $t \in R$ and $p \in \Pi$ define the Π-parallel plane Π_t, and the Π-perpendicular line L_p by

$$\Pi_t = \Pi + tv, \quad L_p = p + L. \tag{3.1}$$

For a point $p \in \Pi$, consider the line $L_p(3.1)$. Let $p_1 = p + t_1v$ be the first point in $L_p \cap A$ as t decreases from ∞. If the intersection is transverse and if L_p meets A at $p_2 = p + t_2v$ secondly, (if L_p meets A at p_1 tangently, let $p_2 = p_1$) then p is in the domain of Alexandrov function α_1 defined by

$$\alpha_1(p) = (t_1 + t_2)/2. \tag{3.2}$$

If α_1 has an interior local maximum at $p \in \Pi$, then one can show the plane $\Pi_{\alpha_1(p)}$ is a plane of symmetry for A [2, Lemma 2.6]. Three authors observed that α_1 is upper-semicontinuous. Now, we state three authors’ crucial lemma. They proved the following lemma by using cylindrical boundedness of A, Alexandrov reflection technique and upper-semicontinuity of α_1.

Lemma 3.1 [2]. Let $A \subset C^{+}_{a,R}(0)$. Define the related Alexandrov function α on A

$$\alpha(x) = \max_{p \in \Pi} \alpha_1(p). \tag{3.3}$$

Then α is not increasing. i.e., either $\alpha(x)$ is strictly decreasing, or else A has a plane of reflection symmetry parallel to Π.

By simple application of above lemma, we obtain the following result.
PROPOSITION 3.2. Let A be a properly embedded MCH-annulus and let A be contained in $C_{a,R}^+(0)$ and $\partial A \subset D_{a,R}(0)$. If ∂A has a line of reflection symmetry, and the portion of ∂A above this line is a graph, then A has a plane of symmetry parallel to a and to this line.

Proof. Consider some plane Π which lies below A and is parallel to a and the line of symmetry. The symmetry of ∂A implies that $\alpha_1(p)$ is constant for all $p \in \Pi$ with $L_p \cap \partial A \neq \emptyset$. This constant value is equivalent to $\alpha(0)$. If A has not a plane of symmetry parallel to Π, then $\alpha_1(q) < \alpha(0)$ for all q (at which α_1 can be defined) with $q \cdot a > 0$. Consider another plane Π which lies above annulus A and is parallel to Π. Then the function α relative to Π has the property $\alpha(0) < \alpha_1(q)$ for all $q \in \Pi$ (at which α_1 can be defined) with $q \cdot a > 0$. This is contradiction to Lemma 3.3. Hence A has a plane of symmetry Π_\perp parallel to a and the line of symmetry.

COROLLARY 3.3. Let A be a properly embedded MCH-annulus contained in $C_{a,R}^+(0)$. If some plane $a \perp$ which orthogonal to the axis vector a makes a circle by intersecting the annulus A, then A is a Delaunay surface.

Proof. If $a \perp \cap A$ bounds a compact component of A, then we can show that this component is a piece of sphere by using Alexandrov reflection technique. By annaliticity of MCH-surface, A must be a piece of sphere. This is impossible. Hence we may assume $a \perp \cap A$ seperates A into a compact annulus and an infinite annulus. Consider the infinite part. This annulus has symmetry planes parallel to every plane containing a by Proposition 3.4. But the center of mass of any cross-section of Σ perpendicular to a must be contained in each symmetry plane. Hence all symmetry planes intersect in a line parallel to a, and this annulus has rotational symmetry about this line.

References
Constant nonzero mean curvature

Department of Mathematics
Ulsan University
Ulsan 680–749, Korea

Department of Mathematic Education
Pusan National University
Pusan 609–390, Korea