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I . Introduction imate the probability that 1}/(13}:{ X or la Xai
reaches a large number K within a busy

Consider a stable system of a tree—type cycle by simulation.
network of queues. Let [Xn} denote the Direct simulation is very expensive, ineff-
embedded r—dimensional Markov chain re- icient, and even impossible in cases, since

persenting the system. Our goal is to est- , the events of interest are extremely rare.
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Instead, the change of measure for import-
ance sampling is considered. It is known
that if a Markov chain obeys a large deviat-
ion principle(LDP) with a rate function, the
efficient change of measure for importance
sampling can be obtained successfully.’

After reviewing the use of importance sa-
mpling in simulating a M/M/1 queue, the
paper apply this idea to the case of two qu-
eues in tandem by providing the LDP of the
embedded Markov chain of the system.

I . Review of M/M/1 Queue and Importan-
ce Sampling )

Before stating the new results, a brief
summary of the relevent theory relating to
M/M/1 queue will be given, Consider a sta-
ble M/M/1 system, S, with arrival rate #
and service rate A with #/A{l. We are
interested in estimating @ =Pr[A], where
{X.l is a sequence of successive population
in the queue and A denotes the event that
X. hits K before becoming O, assuming it
is initially zero. Our concern is to underst‘and
how these values can be obtained by effici-
ent sumulation.

The estimated value of @, & may be
obtained by direct simulation as follows;

Let us call a “cycle” a movement from
O to the fist time either O is reached agai-
n, or K is reached. Define Va=1 iXa reaches
K in the m® cyclel. Since X} is a regenerative
process with a regenerating point=0, Va.'s
are independent and identically distrib-
uted wth E[V.]=a.

VitttV , .
_.-9-_P__p is an unbiased estimator of @.

Therefore, &=

To guarantee the following accuracy.
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we have to generate N§ cycles
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where PIN(0,1)(7 (b)]=b.
Sine we are interested in a very samll
a, Var(Va)=a—a’~a,.
b)*

7
N9

Therefore,

It shows that the minimum NS5 depends
on @. Since @ has a very small value, it
implies that we have to generate a large
number of cycles to obtain precision to some
degree. It is the main source of inefficiency
in direct simulation.

To overcome this inefficiency, we consider
“Importance Sampling”. Main idea of importan-
ce sampling is to modify the orginal system so
that its population grows much faster and, in
consequence, the event happens more frequen-
tly and translate the estimate from the modified
system in terms of the original one. For exam-
ple, if a modification S of the orignal S is defined
as M/M/1 with arrival rate # and service rate
A, the event is more frequent in S than in S.

Suppose Ps, Ps are the probability me-
asures that govern S, S, repectively and
L.’s are the liklihood ratio between Ps and
Ps in the m® cycle. (Lm’s can be easily co-
mputed for the m™ cycle.) Since the event
is more likely under Psthan under P§, Lm
{1 whenever V.=1. Therefore, Vas(LmV-
m){Vars (Vo). It implies that, to obtain a
same error bound, we have to generate
more cycles for S than for S.

Therefore, the center of importance sam-

pling is on the question “what is the modifi-



RRZGHRRE SHh$ 8, 1991

cation that minimizes Lm when Vm=1?" In
other words, we have to find “the most likely
way” that S reaches K and then modify the
system to make the most likely way excee-
dingly likely. In case of M/M/1, there are
various motheds to find the most likely wa-
y. (cf. [3], [12]).

Unfortunately, it does not seem to be po-
ssible to apply those methods used here to
more complicated examples, such as the
sirstem of a pair of queues in tandem and

a 3 dimensional tree—type network, etc.

Il . Markov Chain and Large Deviation Th-
eory

In this section, we present a large devia-
tion theorem due to Wentzel[8], regarding
certain Markov chains. Consider the pa-
rameterized Markov chain {X:| given by

Xo* =x0

Xor1* =X+ € V(X.", g.),
where €)0 is the parameter which defines
the Markov chain {X!}, xo is the initial valu-
e, V(+, «) is a function from R'XR' to R'
and {m’s are i.i.d. r.v.’s. We are interes.
ted in analyzing {X| when &—0.

Let Fx denote the d.f. of V(x, £ n).

Let m(x)= [R zdFx(z)

M.(s)=[Rrexp{s, z) dFx(z)
Ix(s)=log Mx(s)
hx(u)=fgg,f<s,u)—lx(s)].

Assume the following :

(a) Mx(s){ in a neighborhood of O for
each xe R

(b)d (Fu, Fel (¢ | Xi—X: |, where d is the
Prohorov distance(see [1]), )0 is a con-

stant and | * | is a Euclidean norm.
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Next, construct continuous—time paths
from the realization of {X/}. To do this, at
the epochs t=n+ &, let X*(t)= X
and interpolate piecewise linearly. Let Cr
denote the set of the piecewise continuously
differentiable functions ¢ : [0, T]~R" such
that ¢(0)=xo is fixed. Let P* denote the
measure induced by the {X*(t)} on the Borel
—field of Cr, endowed with the Skorohod
topology [1].

Define the rate function

I(xi, ¢)= [J'QT heo{g(t))dt, ¢(0)=x

o y O WL,

Under (a), (b) with a couple of more te-
chnical assumptions we have the following
results.

Theorm 1.

i ) For each closed subset F of Cr,

lim sup— ¢ log p;msu I(x, ¥).
li') for each open subet G of Cr,
lti_r’n0 inf- € log P*(G)) inf I(x, ¥).
Therefore, if inf I (¥)=inf T(¥),
?lA. weaA0

then P:(A)~exp[——inf I(x, ¥)](UTL-
E), as £,

(where UTLE is the acronym for up to
logrithmic equivalence. )

Suppoes that we want to estimate the pr-
obability of event A,

A= IMiax X. exceeds K before hitting O,

given Xo=xo! . ‘

We consider the importance sampling me-
thod for this purpose.

Our goal is to find the optimal modification
S®, which statisfies

Var s*(Ls*mVm){Var s(LsmVm), for all
modification S.

In other words, we want to solve the fol-
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lowing optimization problem.

IVISin fa 1L2d Ps,
when Ls=-g—§% is the likelihood ratio.

The following two observations are cirtical
to find the optimal S*

Observation 1

If S* is the optimal soution of the pro-
blem, then it also minimize

fa L2 dPs
Observation 2
If ¢ satisfies
igﬁ[é(x,¢)=ls(x.¢')
then S* solves the following equation
Is*(x, ¢*)=0

Then, for any arbitrary small &0,

Pi(¢s) is asymtotically equal to 1.
as €—0, where $i=IpeCrllg—¢*ll
<8t (Il « Il is a uniform norm on Cr.)

In words, ¢° is the most likely path of
the event A and S* is the system in which
¢* is the most likely path among all the
sample paths.

When we consider the Markov chain of
queueing system {X.}, the distribution fun-
ction of the probability measure P, gover-
ning |X«, violates the assumed condition
(b). Hence, we can not blindiy use these
two observation to the case of queueing pr-
ocess in finding the optimal modification for
importance sampling.

The discontinuity in the probabillity struc-
ture of a queueing system (violation of co-
ndition (b)), is mainly caused by the no-
nnegativity condition on the queue length.
If there is no customer in a station, the st-
ation is in an idle state and no service is
offered. This can be thought of a noneneg-

ativity constraint on the queue length pro-
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cess, which imposess a change in the pro-
babilistic behavior of the server when its
queue becomes empty. This is the main ob-
stacle in finding the LDP of the queueing

system through the above results.

IV . Potential Process and its LDP

In order to avoid the nonnegativity con-
straint, we present potential process and
Skorohod problem regrading networks of
tandem queues, due to Park[9].

Let’s Consider a network of tandem que-

ues.

A H)

Az( A2)- As( As)

(Figure 1) Network of Tandem Queues
(Cu, Ay, Az)—System)

Ai(t) . Arrival  Process~Poisson  Process
with #,

Ai(t) : Serivce time~Exponential dist. with
A and #{A, for i=1, 2(stable system).
X(t)=[X:(t) Xe(t)],

where Xi(t) is the number of customers at
the station i at time t. X(t) is called the

queue length process of tandem queues.

X2

(Figure 2 A Sample Trajectory on(t, X1, X2)
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* Busy clycle is a movement from the empty
state to the next empty state.

* Each cycle on the figure 4 represents a
busy cycle. (Empty state part of trajectory
is hidden at the origin. )

X:

~

{Figure 3 A Sampie Trajectory in Station L

X2

(Figure 9 A Sample Trajectary on (x, x)

We consider the potential process desc-
ribed as follows;
Let’s consider a system in which servers
provide units of services and they are not
concerned whether there are customers in
their stations or not. The time needed for
the server in the station 1 generating a
unit of service follows the exponential di-
stribution with parameter A.. If they pro-
vide a service unit at a time when their

queues are empty, then we consider the
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“queue length” to change from 0 to —1.
Similarly if the queue length is already
negative we simlpy decrement it by 1 again
at the service time. The rest of the topolo-
gical structure and probabilistic assumption-
s are defind same as the one for the original
system. The variable we observe at time t
at each station is the number of arrivals
up to time t to the station minus the number
of the service units generated in the station
up to time t. Let Yi{t) be the observation
in ith element of Y(t). We call Y “potential
process”.

Based on the results in the section 3,
LDP of the Markov chain of the potential
process, Y., can be easily established
and its rate function on [0, T] is

x,¢)= [f; he(g(t))dt, if $(0)=x
S , 0. W,

where hx(U)= inf !Slkﬂ(i)'*'SZkA)(L)
Ut=51—% S1 S2
Uz=82~S3
1
+53k)z(s—3)l

and k(s)= [ ys—log ys—1, s)0
0 y O.W..

When we calculte I(x, ¢ ), we assume #
+ A+ A.=1, without loss of generaity.

It is noticed that h«( *) does not depend
on x, Therefore, we denote hx(* ) with h
(o).

Therefore, LDP of {Y.l implies that

P! (A)~Expl—ginf (¥ hig(0))dt,

€ —0, where T, is the firtst time when Max
¢: reaches K.
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V . Skorohod Problem

Our objective in this section is to exhibit
the queue length process of a network of
tandem queues as a continous mapping Z
of the potential process Y, i.e, Z=e*Y.
Then Z should have the same distribution
as the queue length process of the network
of the tandem queues.

The following theorem is a key to achieve
the goal.

Let D be a set of 2 dimensional right
continous functions with left limits for all t
on [0, T].

Let M=[l —1]
0 11

Theorerm 2.

For a given ¥( ) with ¥(«)e R¥t),
there is a unique pair of function(g, u),
satisfying the following :

(1) ¢(t)=¥(t)—Mult)

(2) ¢(t))0.

(3) ui( *) is non—decreasing with u(0)=
0 and uj( *) increases only at those times
t where ¢:(t)=0

For a proof, see Park([9].

The problem of showing the existence of
¢, u, is called “Skorohod problem” and the
pair(¢, u) is called the solution of the Sko-
rohod problem.

Let & and ¢ be a mapping from Cr to
Cr, defined by 6 (¥)=¢ and o (¥)=u.

We name 8 “Skorohod map”. Based on
this map.

Let Z(@)(t)=6(Y(@))(t), U(w)=0(Y
(@))(t). In Lemma 2, we investigate the
probability structure of the process Z.
Lemma 2

(1) The processes Z and U satisfy the fol-
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lowing almost surely;
1. Z{(t)(00) e RA
2. Ui(t) is nodecreasing with U: (0)
=0.
3. Ui(t) increases only at those time t
where Zi(t) =0,

(2) Z is a time homogeneous Markov pro-

cess.

It implies that the process Z and the queue
length process X have the same small time
increment conditional probability and, the-
refore, they have the same infinitesimal ge-
nerator. It follows that they have the same
distribution. (cf. p.111 and p. 161 in Ethier
and Kurts[7].)

VI. LDP of Network of Tandem queues

Since the process Z and the queue length
process X have the same distribution, the
Markov chain {ZJ of Z and IX. have the
same probability structure. It follows that
for any closed set F,

Pz (F)=P* wa(67'(F)).
and 67! (F) is a closed set.

Therefore, by the property of the LDP
of the potential process,

i) for any closed set F,

1zal (F | xo=x)( inf inf

lim sup— € log P*
o0 ¢¢F weglp)

I(x, ¥).
By the same reson.
i ) for any open set G,
liminf— € log P* 1za (G | xo=x, ) ( inf inf
+=0 g€ 6 Tegly
I(x, ¥).
Therefore, LDP of {Xi is well-defined with
its rate function;

Tl (x, 4>)=[ inf S0 (t))dt, if $(0)=x
[ eqlg)

oo, ,0.W. .
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VI. The Most Efficient Change of Measure
for Importance Sampling

The observation 1 and 2 present the method
to find the optimal change of measure.
First, we find the most likely path of the
event A.
31‘1’{ Tixal (x, ¢)

= inf inf Twa(¥),
$eA: Yegly

where Ao=lp € A : ¢(0)=0}
£ (W (t))de

= inf inf
peA: Yeglg)

1 1 1
= inf Tg[shs (=) + shei(o7) +she(20)],
S»o, Sz, SO ! :
S1—S82)0 or S2—S3)0
S14+ 824 S3=1

where T,= —S-!ég-, if SI{S: and S2)Ss

1
E=

This nolinear programming problem can be
easily solved by Kuhn—Tucker condition and
the minimum is achieved at Si= 1., Se= ¥,
Ss=A:z when A1{Az and at Si= 1, Se= 2.,
Ss= #, when A< 4.

That 1s, the minimum is obtain when # is

exechanged with smaller of A: and A:

VI. Future Research

This result can be easily generalized to the
case of general tree—type networks. To study
the congestion event in transportation networks
more precisely, this research should be gen-
eralized to the case that the service rates and
arrival rates are functions of state vanables.
The forcus of continuing effort will be in this

direction.
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