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APPROXIMATE CONTROLLABILITY
AND CONTROLLABILITY FOR
DELAY VOLTERRA SYSTEM

YouNGg CHEL KwWUN, JONG YEOUL PARK AND JONG WON RyU

1. Introduction

We consider the following delay volterra control system

z(t) =z(¢)(0), 0<t<T
(1) U (t,04(0) + / U(t, ) (F(s, z4(6)) + (Bo)(s)} ds
zo(8) =¢ € C.

Here, let X and V be Hilbert spaces. The state function z(t),0 <t < T,
takes values in X and the control function v is given in L?(0,T; V) and
U(t,s) is a linear evolution operator on X. Let C be a Banach space
of all continuous functions from an interval of the form I = [—h,0] to
X with the norm defined by supremum. If a function u is continuous
from I U[0,7) to X, then u, is an element in C which has point-wise
definition:
u(f) =u(t+6) for 8¢l

We assume that F is a nonlinear function from [0, 7] x C to X and B
is a bounded linear operator from L%(0,T;V) to L*(0,T; X).

The purpose of this paper is to prove the approximate controllability
results, which were shown in [4] for the abstract semilinear control
system, here, for the delay volterra system in the case of trajectories.
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2. Approximate Controllability

The norm of the space L%(0,T; X) or L?(0,T;V) is denoted by || - ||
and for the other spaces we use || - || x, || - |c and so on. We assume the
following hypotheses.

(A) There exist positive constants M’, w such that

|U(t,s)|| < M'e* =) 0<s<t<T.

[7AN

Here, we put M = M'e*T,
(F) There exists a constant L > 0 such that

1F(#9) = F(t,9)llx < Llle ~ ¥llc,

0, v€C,0<t<T and F(t,0)=0.
REMARK. To simplify the calculations and to give a simple inequal-

ity condition, we assume the above growth condition. Generally, it is
sufficient to assume

IE(t @) = F(t,¥)llx < L1+ lle —dllc), ¢, ¥ €C.

We consider the nonlinear system

2i(¢) = A(t)ze(8) + F(t,2u(9)) + (Bo)(1),

where the linear operator A(t) generate a strongly continuous evolution
system {U(t,s)} on X and is continuously initially observable. Here a
unique mild solution is given as, for each v in L?(0,T;V),

(2) zi(4;v)(0) = U(t,0)¢(0)+/0 U(t, s){F(s,zs(¢:v)) + (Bv)(s)}ds.

The solution mapping W from L%(0,T; V) to C(0,7T;C) can be defined
by
(Wo)(t) = z(¢50)(-).
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We also define the continuous linear operator S from L*(0,T;X) to
C(0,T; X) by

(S’p)(t) = /: U(t,s)p(s)ds, pe L*(0,T;X), 0<t<T.

The reachable sets of a nonlinear system are used to be compared to
the reachable sets of its corresponding linear system ( F = 0 in (1)).
Put

K,(0)={z€ C(a,T;X) :2(t) = U(t,0)¢(0)

+/t U(t,s)(Bv)(s)ds, ve L*0,T;V)}.
0

and define the reachable set Ko(F') in C(a,T;X) by
Ko(F) ={z:(¢;v)(0) € C(a, T; X) : z4(¢5v)(0) = U(%,0)¢(0)

+/0 U(t, s){F(s,zs(#;v))s) + (Bv)(s)}ds, v € L*(0,T; V)}.

LEMMA 1. Let v(-) € V and ¢ € C. Then under Hypothesis (F) the
solution mapping (Wv)(t) = z:(¢;v) of (2) satisfies

lze(é;v)llc < (Mll¢llc + MBIl |ullVT) exp(LMT),

where L and M are constants for 0 <t <T.

Proof. From hypothesis and system (2) we have

lze+6( 5 v)(0)]| x

t+6
< M||6(0)]x +MA {I1F(s,zs(50)lx + 1Bl llvllx } ds

t+86
< M||$(0)]x + ML / l2a(¢10)lc ds
0
+M]||B||||lv|[vVt+68, —h<6<0.
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Hence

t
llze(¢; v )@ x <Ml¢llc + ML/O llzs(8;v)llc ds

+ M||B]| [lv]| V2.

sup
~h<6<0

Thus we have

t
le(4;0)llc < Mliglic + M|\ Bl [jvllvE + ML./(] llzs(¢; v)llc ds.

From Gronwall’s inequality,
lze(;0)llc < (Mllgllc + M| B |[vlVT) exp(LMT)
for0<t<T.
LEMMA 2. Let vy(-) and v2(-) be in V. Then under hypothesis (F)
the solution mapping (Wv)(t) = z:(¢;v) of (2) satisfies
llze(¢; va)(+) — ze(5v2)(-)llc
< MVT exp(LMT)||Bus(-) — Bua(-)l| 30,7 %)

Proof. From hypotheses and system (2) we have, for —h < 8 < 0,
llze(#;v1)(0) — z2( 5 v2)(0) | x

t+6
< M/ | Bvi(s) — Bvz(s)llL2¢0,7;x) ds
0

t+8
+ ML/ |zs(@; v1) — 25 (3 v2)||cds.
0
Hence, by Gronwall’s inequality,

sup ||lze($;v1)(8) — zo( @5 v2)(6)] x
<6<0

= ”-Tt(¢; vl) - wt(¢; U2)||C
< MYT|[Bvi(-) — Bva(-)||120,1;x) exp(LMT).
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Consequently, we have
llze(d501)() — ze(85v2) (Ml
< MVT exp(LMT)||Bvi(-) — Bva(-)|l22(0,1;%)

for0<t<T.

DEFINITION. The system (2) is called approximately controllable
on [0, T} if for any given £ > 0 and ér € L?(0,T; X) there exists some
control v(-) € L%(0,T; V) such that

lér — U(T,0)¢ — SF(-,z.($;v)) — SBy|| < e.

We assume the following hypotheses: (B) For any given ¢ > 0 and
p(-) € L*(0,T; X) there exists some v(-) € L*(0,T; V) such that

(B1) 15p — SBo,1yvll < €

(B2) 1B, myv()llL2c0,75x) < @allP(lL20,7:)
where ¢, is a positive constant independent of p(-) ;
(Bs) The constant ¢; satisfies @ LMVT exp(LMT) < 1.

THEOREM 1. Under hypothesis (B), the system (2) is e-approxi-
mately controllable on [0, T}].

Proof. Since the domain D(A) is dense in L*(0, T; X), it is sufficient
to prove

D(4) c alF),
i.e., for any given € > 0 and {7 € D(A) there exists v(-) € V such that

lér — U(T,0)¢ — SF(s,z4(¢;v)) — SBv|| <,
where

zi(P;v) = U(t,0)¢+A U(t,s){F(s,x,(qS;v))+Bv(s)}ds.
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As {1 € D(A) there exists some p(-) € C(0,T; X) such that
Sp = &r ~ U(T,0)4.

Assume vy () € V is arbitrarily given. By hypothesis (B;) there exists
some vz(-) € V such that

lér — U(T, 008 — SF(2.(¢501)) - 5Bual| < 5.

For vy(-) thus obtained, we determine w2() € V by hypothesis (B;)
and (B;) such that

ISFCo 265 02)) ~ F(o2.(¢500)] = SBua] <

and by Lemma 2,

[Bwa ()| < 1l|F(s,24(8;02)) — F(s, z4(; v))ll L2, 1;x)
< ailllzs(d5v2) — zo( 5 01)|lc
< @i LMVT exp(LMT)|| Boy(-) — Bo1()lp2(0.1:x)-

Thus we may define v3(-) = vy(-) — w2(-) in V, which has the following
property;
[6r—U(T,0)¢ — SF(s,z,(4; v2)) — SBus||
=[lér — U(T,0)¢ — SF(s, z4(¢;v1)) — SBvg + SBw,
= SIF(s,20(85v2)) ~ F(s,2u(8;01))|

1 1
+ 53-)6

22
By induction, it is proved that there exists a sequence v,(-) in V such

that . .
I — U(T,0)¢ — SF(s,24(¢;v)) — S5Bvnt ||

<(1

1
_2_2++—2—m)5, n:1’2’...
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| Bvn+1(:) — Boa()liL2(0,75x)
< %LMﬁeXP(LMT)"BUn(') — Bup-1(-)l|22¢0,1;%)-

By hypothesis (B3) the sequence {Bvp;n = 1,2,---} is a Cauchy se-
quence in the Banach space L?(0,T;X) and there exists some u(-) in

L%(0,T; X) such that
nli_’rxgo Bun(-)=u(-) in L*0,T;X).
Therefore, for any given € > 0 there exists some integer N, such that
13Bun, 1 — SBon. || < 5

and

|ér~U(T,0)¢ — SF(s,z.(4;vn,)) — SBow. |

<liér — U(T,0)¢ — SF(s,z4(¢;vn,)) = SBon 41
+ 15BN, +1 — SBow, |

1 1 €
<(-2-7+“.+§N_+1-)E+_SE‘

Thus the nonlinear system (2) is approximately controllable on [0, T).

THEOREM 2. Suppose the range Bv of the operator B is dense in
L?(0,T; X). Then under hypothesis (F) the delay volterra system (2)
is approximately controllable on [0,T].

Proof. For any given ¢ > 0 and p(-) € X there exists some v(-)eV
such that if

1Bo(-) = p()lle2(0,15%) < 8lIPC)llz2¢0,7)
8p — SBu|| < ¢,
where § > 0 is any given constant. Thus we have

IBv( )l L2o,7:3) < IP(lz20,7:30(8 + 1).

This satisfies the condition (B). By theorem 1,the system (2) is approx-
imately controllable on [0, T].
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3. Delay Control System

We also consider the following delay volterra control system

@)mwmﬁdmﬁW®+AU@ﬂW@aWWﬂ&MMﬁ

2, (¢)(0) = v.

Here u € L%(0,T;U), a Banach space of possible control actions. We
assume the following hypothesis;
(a) The linear pair (A, B) is exactly controllable to the subspace V.
(b) The nonlinear function F;[0,T] x C — X is continuous and
satisfies a Lipschitz-type condition

IE(,é) — F&, )l < r(t)ll¢ - ¢lic

where r(||8}l, ||¥]|) = r(¢) is continuous on [0,T], r(t) — 0 as ¢ — 0 and
F(t,0)=0,0<t<T.

(c) The continuous linear evolution system generated by A(t) satisfies
Ut,s)lre XNV forallz € X,0< s<tand

Ut s)zlx < p®llelx, lpllzzorx) = e < oo,

10 )2l < @l Nalliom = d < oo
(d) There exists a positive L > 0 such that

u/ L $)Bu(s)dsl] < L)l 1),

where L(-) is increasing, L(0) = 0.
(e) v is chosen so that the following conditions hold

sup (c+ L{t)d)r(|l¢(1)]|,0) < k < 1,
(Dl

c sup r(t) <k <1l
0<a(8),¥(0) <y
(f) The evolution system {U(¢,s)|0 < s <t < T} is compact map-
ping X to X.
Throughout this paper, we consider the case where the initial func-
tion ¢ satisfies ¢(6) =0, 6 € I.
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THEOREM 3([3]). Suppose that S is a closed, bounded convex sub-
set of a Banach space X. Suppose that ®,, ®, are continuous mappings
from S into X such that

(1) (®1 + ®2)S C S,

(ii} || @12 — ®12'||x < k||z—2'| forallz, ' € S where k is constant
and 0 <k <1,

(iii) ®2(S) is compact. Then the operator ®; + ®2 has a fixed point
in S.

THEOREM 4. Hypothesis (a)-(f) are satisfied. Then the state of the
system (3) can be steered from the ¢ to any final state v, satisfying

lollv < M

L

in the time interval [0, T].
Proof. We define the linear operator G from U to X by

T
Gu = / U(T,s)Bu(s)ds.
0
We can assume, without loss of generality that Range G = V and we

can construct an invertible operator G defined on L*(0,T;U)/ker G
((1]). Then, the control can be introduced

T
u(s) = G [v - / U(T, s)F(s, a:,(¢))ds](s).
0
This control is substituted into equation (3) to provide the operator

24(4)(0) = / U(t, 5)F(s, z2(6)) ds

t T
+ / U(t,s)BG™ [v - / U(T,s)F(s,x,(qS))ds] (s)ds
0 0
Notice that ®,,(¢)(0) = v, which means that the control u steers the

nonlinear system from the origine to v in time T provided we can obtain
a fixed point of the nonlinear operator ®. We now define

B124($)(0) = / U(t, 5)F(s, z.(#)) ds
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and

By2,(4)(0) = /0 t U(t,s)BG! [v_ /0 ’ U(T, s)F(s,24(6))ds| (s) ds.
We can now employ Theorem 3 with
S = {zd)(-) € C : |lze( D) < 7}
Then the set S is closed, bounded and convex. From the definition,
Pxi(¢)(0) = @124(4)(0) + p224(4)(0)
_ /0' U(t, $)F(s,25(¢)) ds

t T
+/0 U(t,s)BG [v—/o U(T, s)F(s, z+(¢)) ds|(s)ds.
Thus for any z:(¢)(:) € S,
@z(#)O)x = [[®xe46(4))(0)]]
146

=||/0 U(t +8,5)F(s,zs(6)) ds

t40 o T
+ /0 U(t,s)BG [v— /0 U(T,s)F(s,z,(qS))ds](s)ds

<Hellezo, 1) |1F(ss zs(@)l 120, 15%) + LlvlL200,730)
+ Lllgll 2o, 7.y | F(5, z5(8))|

<(c+ Ld)r(t)|lzs(d)llc + LllvllL2o,7;x)

<ky+(1—k)yy =5, —h<8<O.

Hence

sup [ @z«(¢)(0)llx = [®ze(P)llc < v
—h<8<0

using (b), (c), (d), and (e). Hence ®1z+($)(0) + $22:(¢)(0) € S for all
r(¢) € S, which means that part (i) of Theorem 3 is satisfied.
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To show that ®; and ®; are completely continuous. We consider

[@1(24(8) +1)(6) — Srz4($)(9)]|x
=||®1z¢40(¢) + 1)(0) — 212e46(4)(0)]| x

= ”/(;Ha U(t+6,3)[F(s,z4(¢) + 1) — F(s,z4(¢))]ds X

<lpllz2o,r; )1 F (s, za(¢) + 1) — F(s,25($)l| 220,70
SHipllzze,rxr®)lnlle, —h <6 <0, 0<¢t <T.

Hence

sup || ®1(ze(8) + n)(0) — 1(ze()(6)l|x
<8<0

=||®1(z:(¢) + 1) = P1(ze(B)llc
<|pllz20,rxyr(@)llnlle — 0

as n — 0. Thus, we have

[ @2(ze(8) + n')(6) — B2(:(6))(0)llx
= [|®2(ze+6(¢) +1')(0) — P2(ze+6(8)(0)l| x

[ veropeo- | U@ F(s,2a(6) + 1) ds)(s) ds

t+6 B T
- / Ut +96,s)BG[v - / F(s,as(4)) ds)(s) ds” )
0 0 “
< Llgllz20,7,3) 1 F' (s, 25(¢) + ') — F(s,24())l| 20,7 %)
< Lligll 20, ;) (DI’ llc, —h<8<0,0<t<T.

Consequently

sup [ ®2(z4(¢) + 1')(6) — P2(z:(8)(8)l| x
<6<0

=||®2(z:(4) +1") — 2(z4(8))lIc
< Lligliz20,m;xyr 7' llc — 0

as 5’ — 0. Thus ®, and &, are continuous.
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Using the Arzela-Ascoli Theorem we show that ®; maps S into a
precompact subset of S. We consider

t+8 T .
By:(6)(8) = /0 U(t+6,8)BG" [o- /0 U(T, $)F(s, +())ds| (s)ds
We now define
®2_cze(0)(8)
t+6—¢ 5 T
_ /0 U(t+6,9)BG v - /0 U(T, 8)F(s,24(6))ds] (s)ds

for all (z(¢))¢ € S. Then
t+60—¢ ~
Qy_.24(0)(0) = U(t+0,t+9—-e)/ U(t+8—e,s)BG™! [v
0

T
- /ﬂ F(s,$3(¢))ds](s)ds.

By hypothesis (f), U(t + 6,t + 6 — ¢) is a compact operator. Thus the
set

Ka[z:()(0)] = {D2-ex:(4)(8); 2:(¢) € S}

1s precompact. Also
[@22:($)(6) — 2—exe(4)(0)l|x
t+6 3 T
= H/ Ut +6,s)BG™! [v - /; U(T,s)F(.s,zs(qS))ds] (s)ds”x
<L) ol iro,rix + drDlles(@)lc) — 0 s e =0,

Hence

sup || @2z4(6)(8) — P2—c7:(¢)(0)]|x
h<6<0

=[|®22146(8)) — P2—ezir0(d)llc
< L(e){lvllL2go,m;x) + drt)l|zs(9)llc} — 0
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as € — 0. Thus there are precompact sets arbitrarily close to the set

Ks[zo(9)(0)] = {@22:(8)(0); z:(4) € S}

and therefore K;[x(¢)(8)] is precompact.

We next show that ®; maps the function in S into an equicontinuous
family of functions. For equicontinuity from the left we take t > ¢ >
t' > 0 then

[22¢($)(6) — P2ze—0()(0)l|x
t+6 T
=H /0 i U(t +6,s)BG™? [v— /0 U(T,s)F(s,z,('qs))ds] (s)ds

-/ T v 0,086 o - [ U, F6 e 0]
<| /0 e Ut +6,5)BG™ [o - /0 ' U(T, 5)F(s, 2+($))ds| (s)ds

— /0“'9“5 U(t—t'+86,s)BG™! [v - /OT U(T,s)F(s,xa(qS))dsJ(s)ds“x

- T
oo ,U (t 48,9867 [v- [ U(T,5)F(s,2.(8))ds] (s}

t+6—t¢

U(t+6—1t,s)BG™ [v — A ' U(T, s)F(s, :cs(¢))ds] (s)ds”x

t+6—¢

t+6—¢ N
SHU(t+0,t-t’+9)/ U(t—t' +6,s)BG™!
0

. [v - /0 ’ U(T, s)F(s, :cs(d)))ds] (s)ds

_ /0%8 Ut—t +6,59)BG [v - /UT U(T,5)F(s, 2a(#))ds | ()ds]|

t+0 T
. U(t +6,5)BG™ [v - /0 U(T, 5)F(s,25($))ds] (s)ds
+ “ /t::t U(t+6—t,s)BG™ [U _ /OT U, s)F(s,xa(¢))ds](s)d3HX
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U(t—t +6,s)BG™!

t+6—¢
<+ oe-v+o)-1 [
0

. {v - /OT U(T,s)F(s,x,(zb))ds](s)

ds
X

t [ pero9meto- [ v orez@niso)

+0—¢

ds
X

t+6—t' . T
+/ U(t+6—t,s)BG™! [’U—/ U(T,s)
t 0

+6—¢
- F(s, :c,,(qS))ds] (s)“x ds
WU+ 6,8 —t' +6) — I|L(t + 6 — &)||ullx
+ L(e)lluflx + L(e = t)||ullx — 0

as € — 0, by L(t) - 0ast — 0 and U(t,s) is continuous in s and t.
Thus we have

sup || ®2x($)(6) — P2zs0(6)(6)ll x
—h<H<0
=||®2z4(¢) — P22¢—v(P)]lc — 0 ast’' — 0.

The equicontinuity from the right is similar. Finally we must have a
Lipschitz condition for the operator ®,. Consider for z:(¢), Z:(¢) € S,

[@12(9)(6) ~ 212(9)(6)]|x
t+¢
= [ vt olr e, ne) - s, auenias|

<|Ipllzzo, T x) 1 F (s, zs(4)) — F(s,2s(¢))lIx
Ser(t)llzs(@) — 2s(8)llc-

Consequently,

[@12:(¢) — 212l < er(t)llzs(¢) — Z5(d)llc-

Therefore, by Theorem 3, the proof of Theorem 4 is complete.
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