APPROXIMATE CONTROLLABILITY AND CONTROLLABILITY FOR DELAY VOLTERRA SYSTEM

YOUNG CHEL KWUN, JONG YEOUL PARK AND JONG WON RYU

1. Introduction

We consider the following delay volterra control system

$$x(t) = x_t(\phi)(0), \quad 0 < t \le T$$

$$= U(t,0)\phi(0) + \int_0^t U(t,s) \{ F(s, x_s(\phi)) + (Bv)(s) \} ds$$

$$x_0(\theta) = \phi \in C.$$

Here, let X and V be Hilbert spaces. The state function x(t), $0 \le t \le T$, takes values in X and the control function v is given in $L^2(0,T;V)$ and U(t,s) is a linear evolution operator on X. Let C be a Banach space of all continuous functions from an interval of the form I = [-h,0] to X with the norm defined by supremum. If a function u is continuous from $I \cup [0,T]$ to X, then u_t is an element in C which has point-wise definition:

$$u_t(\theta) = u(t + \theta)$$
 for $\theta \in I$.

We assume that F is a nonlinear function from $[0,T] \times C$ to X and B is a bounded linear operator from $L^2(0,T;V)$ to $L^2(0,T;X)$.

The purpose of this paper is to prove the approximate controllability results, which were shown in [4] for the abstract semilinear control system, here, for the delay volterra system in the case of trajectories.

Received February 12, 1990. Revised February 26, 1991.

2. Approximate Controllability

The norm of the space $L^2(0,T;X)$ or $L^2(0,T;V)$ is denoted by $\|\cdot\|$ and for the other spaces we use $\|\cdot\|_X$, $\|\cdot\|_C$ and so on. We assume the following hypotheses.

(A) There exist positive constants M', w such that

$$||U(t,s)|| \le M'e^{w(t-s)}, \quad 0 \le s \le t \le T.$$

Here, we put $M = M'e^{wT}$.

(F) There exists a constant L > 0 such that

$$||F(t,\varphi)-F(t,\psi)||_X \leq L||\varphi-\psi||_C$$

$$\varphi$$
, $\psi \in C$, $0 \le t \le T$ and $F(t,0) = 0$.

REMARK. To simplify the calculations and to give a simple inequality condition, we assume the above growth condition. Generally, it is sufficient to assume

$$||F(t,\varphi) - F(t,\psi)||_X \le L(1+||\varphi - \psi||_C), \quad \varphi, \ \psi \in C.$$

We consider the nonlinear system

$$\dot{x}_t(\phi) = A(t)x_t(\phi) + F(t, x_t(\phi)) + (Bv)(t),$$

where the linear operator A(t) generate a strongly continuous evolution system $\{U(t,s)\}$ on X and is continuously initially observable. Here a unique mild solution is given as, for each v in $L^2(0,T;V)$,

(2)
$$x_t(\phi; v)(0) = U(t, 0)\phi(0) + \int_0^t U(t, s) \{F(s, x_s(\phi; v)) + (Bv)(s)\} ds.$$

The solution mapping W from $L^2(0,T;V)$ to C(0,T;C) can be defined by

$$(Wv)(t) = x_t(\phi; v)(\cdot).$$

We also define the continuous linear operator \tilde{S} from $L^2(0,T;X)$ to C(0,T;X) by

$$(\tilde{S}p)(t)=\int_0^t U(t,s)p(s)ds,\quad p\in L^2(0,T;X),\ \ 0\leq t\leq T.$$

The reachable sets of a nonlinear system are used to be compared to the reachable sets of its corresponding linear system ($F \equiv 0$ in (1)). Put

$$K_{\alpha}(0) = \{ z \in C(\alpha, T; X) : z(t) = U(t, 0)\phi(0) + \int_{0}^{t} U(t, s)(Bv)(s) ds, \quad v \in L^{2}(0, T; V) \}.$$

and define the reachable set $K_{\alpha}(F)$ in $C(\alpha, T; X)$ by

$$K_{\alpha}(F) = \{x_{t}(\phi; v)(0) \in C(\alpha, T; X) : x_{t}(\phi; v)(0) = U(t, 0)\phi(0) + \int_{0}^{t} U(t, s)\{F(s, x_{s}(\phi; v))_{s}) + (Bv)(s)\}ds, \ v \in L^{2}(0, T; V)\}.$$

LEMMA 1. Let $v(\cdot) \in V$ and $\phi \in C$. Then under Hypothesis (F) the solution mapping $(Wv)(t) = x_t(\phi; v)$ of (2) satisfies

$$||x_t(\phi; v)||_C \le (M||\phi||_C + M||B|| ||u||\sqrt{T}) \exp(LMT),$$

where L and M are constants for $0 \le t \le T$.

Proof. From hypothesis and system (2) we have

$$||x_{t+\theta}(\phi; v)(0)||_{X}$$

$$\leq M||\phi(0)||_{X} + M \int_{0}^{t+\theta} \{||F(s, x_{s}(\phi; v))||_{X} + ||B|| ||v||_{X}\} ds$$

$$\leq M||\phi(0)||_{X} + ML \int_{0}^{t+\theta} ||x_{s}(\phi; v)||_{C} ds$$

$$+M||B|| ||v||\sqrt{t+\theta}, \quad -h \leq \theta \leq 0.$$

Hence

$$\sup_{-h \le \theta \le 0} \|x_t(\phi; v)(\theta)\|_X \le M \|\phi\|_C + ML \int_0^t \|x_s(\phi; v)\|_C ds + M \|B\| \|v\| \sqrt{t}.$$

Thus we have

$$||x_t(\phi;v)||_C \le M||\phi||_C + M||B|| \, ||v||\sqrt{t} + ML \int_0^t ||x_s(\phi;v)||_C \, ds.$$

From Gronwall's inequality,

$$||x_t(\phi;v)||_C \le (M||\phi||_C + M||B|| \, ||v||\sqrt{T}) \exp(LMT)$$
 for $0 \le t \le T$.

LEMMA 2. Let $v_1(\cdot)$ and $v_2(\cdot)$ be in V. Then under hypothesis (F) the solution mapping $(Wv)(t) = x_t(\phi; v)$ of (2) satisfies

$$||x_t(\phi; v_1)(\cdot) - x_t(\phi; v_2)(\cdot)||_C$$

$$\leq M\sqrt{T} \exp(LMT) ||Bv_1(\cdot) - Bv_2(\cdot)||_{L^2(0,T;X)}$$

Proof. From hypotheses and system (2) we have, for $-h \leq \theta \leq 0$,

$$||x_{t}(\phi; v_{1})(\theta) - x_{t}(\phi; v_{2})(\theta)||_{X}$$

$$\leq M \int_{0}^{t+\theta} ||Bv_{1}(s) - Bv_{2}(s)||_{L^{2}(0,T;X)} ds$$

$$+ ML \int_{0}^{t+\theta} ||x_{s}(\phi; v_{1}) - x_{s}(\phi; v_{2})||_{C} ds.$$

Hence, by Gronwall's inequality,

$$\begin{split} \sup_{-h \le \theta \le 0} & \|x_t(\phi; v_1)(\theta) - x_t(\phi; v_2)(\theta)\|_X \\ &= \|x_t(\phi; v_1) - x_t(\phi; v_2)\|_C \\ &\le M\sqrt{T} \|Bv_1(\cdot) - Bv_2(\cdot)\|_{L^2(0,T;X)} \exp(LMT). \end{split}$$

Consequently, we have

$$||x_{t}(\phi; v_{1})(\cdot) - x_{t}(\phi; v_{2})(\cdot)||_{C} \le M\sqrt{T} \exp(LMT) ||Bv_{1}(\cdot) - Bv_{2}(\cdot)||_{L^{2}(0,T;X)}$$

for $0 \le t \le T$.

DEFINITION. The system (2) is called approximately controllable on [0,T] if for any given $\varepsilon > 0$ and $\xi_T \in L^2(0,T;X)$ there exists some control $v(\cdot) \in L^2(0,T;V)$ such that

$$\|\xi_T - U(T,0)\phi - \tilde{S}F(\cdot,x.(\phi;v)) - \tilde{S}Bv\| < \varepsilon.$$

We assume the following hypotheses: (B) For any given $\varepsilon > 0$ and $p(\cdot) \in L^2(0,T;X)$ there exists some $v(\cdot) \in L^2(0,T;V)$ such that

$$\|\tilde{S}p - \tilde{S}B_{(0,T)}v\| < \varepsilon;$$

$$||B_{(0,T)}v(\cdot)||_{L^2(0,T;X)} \le q_1 ||p(\cdot)||_{L^2(0,T;X)}$$

where q_1 is a positive constant independent of $p(\cdot)$;

(B₃) The constant
$$q_1$$
 satisfies $q_1 LM\sqrt{T} \exp(LMT) < 1$.

THEOREM 1. Under hypothesis (B), the system (2) is ε -approximately controllable on [0, T].

Proof. Since the domain D(A) is dense in $L^2(0,T;X)$, it is sufficient to prove

$$D(A) \subset \overline{K_{\alpha}(F)}$$
,

i.e., for any given $\varepsilon > 0$ and $\xi_T \in D(A)$ there exists $v(\cdot) \in V$ such that

$$\|\xi_T - U(T,0)\phi - \tilde{S}F(s,x_s(\phi;v)) - \tilde{S}Bv\| < \varepsilon,$$

where

$$x_{t}(\phi; v) = U(t, 0)\phi + \int_{0}^{t} U(t, s) \{F(s, x_{s}(\phi; v)) + Bv(s)\} ds.$$

Young Chel Kwun, Jong Yeoul Park and Jong Won Ryu

As $\xi_T \in D(A)$ there exists some $p(\cdot) \in C(0,T;X)$ such that

$$\tilde{S}p = \xi_T - U(T,0)\phi.$$

Assume $v_1(\cdot) \in V$ is arbitrarily given. By hypothesis (B_1) there exists some $v_2(\cdot) \in V$ such that

$$\|\xi_T - U(T,0)\phi - \tilde{S}F(\cdot,x.(\phi;v_1)) - \tilde{S}Bv_2\| < \frac{\varepsilon}{2^2}.$$

For $v_2(\cdot)$ thus obtained, we determine $w_2(\cdot) \in V$ by hypothesis (B_1) and (B_2) such that

$$\|\tilde{S}[F(\cdot,x.(\phi;v_2))-F(\cdot,x.(\phi;v_1))]-\tilde{S}Bw_2\|<rac{arepsilon}{2^3}$$

and by Lemma 2,

$$\begin{split} \|Bw_2(\cdot)\| &\leq q_1 \|F(s,x_s(\phi;v_2)) - F(s,x_s(\phi;v_1))\|_{L^2(0,T;X)} \\ &\leq q_1 L \|x_s(\phi;v_2) - x_s(\phi;v_1)\|_C \\ &\leq q_1 L M \sqrt{T} \exp(LMT) \|Bv_2(\cdot) - Bv_1(\cdot)\|_{L^2(0,T;X)}. \end{split}$$

Thus we may define $v_3(\cdot) = v_2(\cdot) - w_2(\cdot)$ in V, which has the following property;

$$\begin{split} \|\xi_T - U(T,0)\phi - \tilde{S}F(s,x_s(\phi;v_2)) - \tilde{S}Bv_3\| \\ = & \|\xi_T - U(T,0)\phi - \tilde{S}F(s,x_s(\phi;v_1)) - \tilde{S}Bv_2 + \tilde{S}Bw_2 \\ & - \tilde{S}[F(s,x_s(\phi;v_2)) - F(s,x_s(\phi;v_1))]\| \\ < & (\frac{1}{2^2} + \frac{1}{2^3})\varepsilon. \end{split}$$

By induction, it is proved that there exists a sequence $v_n(\cdot)$ in V such that

$$\|\xi_T - U(T,0)\phi - \tilde{S}F(s, x_s(\phi; v_n)) - \tilde{S}Bv_{n+1}\| < (\frac{1}{2^2} + \dots + \frac{1}{2^{n+1}})\varepsilon, \quad n = 1, 2, \dots$$

and

$$||Bv_{n+1}(\cdot) - Bv_n(\cdot)||_{L^2(0,T;X)}$$

$$\leq q_1 L M \sqrt{T} \exp(LMT) ||Bv_n(\cdot) - Bv_{n-1}(\cdot)||_{L^2(0,T;X)}.$$

By hypothesis (B_3) the sequence $\{Bv_n; n=1,2,\cdots\}$ is a Cauchy sequence in the Banach space $L^2(0,T;X)$ and there exists some $u(\cdot)$ in $L^2(0,T;X)$ such that

$$\lim_{n\to\infty} Bv_n(\cdot) = u(\cdot) \quad \text{in} \quad L^2(0,T;X).$$

Therefore, for any given $\varepsilon > 0$ there exists some integer N_{ε} such that

$$\|\tilde{S}Bv_{N_{\epsilon}+1} - \tilde{S}Bv_{N_{\epsilon}}\| < \frac{\varepsilon}{2}$$

and

$$\begin{split} \|\xi_T - U(T,0)\phi - \tilde{S}F(s,x_s(\phi;v_{N_\epsilon})) - \tilde{S}Bv_{N_\epsilon}\| \\ \leq & \|\xi_T - U(T,0)\phi - \tilde{S}F(s,x_s(\phi;v_{N_\epsilon})) - \tilde{S}Bv_{N_\epsilon+1}\| \\ & + \|\tilde{S}Bv_{N_\epsilon+1} - \tilde{S}Bv_{N_\epsilon}\| \\ < & (\frac{1}{2^2} + \dots + \frac{1}{2^{N+1}})\varepsilon + \frac{\varepsilon}{2} \leq \varepsilon. \end{split}$$

Thus the nonlinear system (2) is approximately controllable on [0,T].

THEOREM 2. Suppose the range Bv of the operator B is dense in $L^2(0,T;X)$. Then under hypothesis (F) the delay volterra system (2) is approximately controllable on [0,T].

Proof. For any given $\varepsilon > 0$ and $p(\cdot) \in X$ there exists some $v(\cdot) \in V$ such that if

$$||Bv(\cdot) - p(\cdot)||_{L^2(0,T;X)} < \delta ||p(\cdot)||_{L^2(0,T;X)},$$
$$||\tilde{S}p - \tilde{S}Bv|| < \varepsilon,$$

where $\delta > 0$ is any given constant. Thus we have

$$||Bv(\cdot)||_{L^2(0,T;X)} \le ||p(\cdot)||_{L^2(0,T;X)}(\delta+1).$$

This satisfies the condition (B). By theorem 1,the system (2) is approximately controllable on [0,T].

3. Delay Control System

We also consider the following delay volterra control system

(3)
$$x_t(\phi)(0) = U(t,0)\phi(0) + \int_0^t U(t,s)\{F(s,x_s(\phi)) + (Bu)(s)\} ds$$

 $x_\tau(\phi)(0) = v.$

Here $u \in L^2(0,T;U)$, a Banach space of possible control actions. We assume the following hypothesis;

- (a) The linear pair (A, B) is exactly controllable to the subspace V.
- (b) The nonlinear function $F; [0,T] \times C \longrightarrow X$ is continuous and satisfies a Lipschitz-type condition

$$||F(t,\phi) - F(t,\psi)|| \le r(t)||\phi - \psi||_C$$

where $r(\|\phi\|, \|\psi\|) = r(t)$ is continuous on [0, T], $r(t) \to 0$ as $t \to 0$ and $F(t, 0) \equiv 0, 0 \le t \le T$.

(c) The continuous linear evolution system generated by A(t) satisfies $U(t,s)x \in X \cap V$ for all $x \in X$, $0 \le s \le t$ and

$$||U(t,s)x||_X \le p(t)||x||_X, \quad ||p||_{L^2(0,T;X)} = c < \infty,$$

$$||U(t,s)x||_V \le q(t)||x||_X, \quad ||q||_{L^2(0,T;X)} = d < \infty.$$

(d) There exists a positive L > 0 such that

$$\| \int_0^{\cdot} U(\cdot, s) Bu(s) ds \| \leq L(\cdot) \|u\|_{L^2(0, T; V)},$$

where $L(\cdot)$ is increasing, L(0) = 0.

(e) γ is chosen so that the following conditions hold

$$\sup_{\|\phi(t)\|\leq\gamma}(c+L(t)d)r(\|\phi(t)\|,0)\leq k<1,$$

$$c \sup_{0 < \phi(t), \psi(t) < \gamma} r(t) \le k < 1.$$

(f) The evolution system $\{U(t,s)|0\leq s\leq t\leq T\}$ is compact mapping X to X.

Throughout this paper, we consider the case where the initial function ϕ satisfies $\phi(\theta) \equiv 0, \theta \in I$.

Controllability for delay volterra system

THEOREM 3([3]). Suppose that S is a closed, bounded convex subset of a Banach space X. Suppose that Φ_1 , Φ_2 are continuous mappings from S into X such that

(i) $(\Phi_1 + \Phi_2)S \subset S$,

(ii) $\|\Phi_1 x - \Phi_1 x'\|_X \le k \|x - x'\|$ for all $x, x' \in S$ where k is constant and $0 \le k \le 1$,

(iii) $\overline{\Phi_2(S)}$ is compact. Then the operator $\Phi_1 + \Phi_2$ has a fixed point in S.

THEOREM 4. Hypothesis (a)-(f) are satisfied. Then the state of the system (3) can be steered from the ϕ to any final state v, satisfying

$$||v||_V \leq \frac{(1-k)\gamma}{L}$$

in the time interval [0,T].

Proof. We define the linear operator G from U to X by

$$Gu = \int_0^T U(T, s) Bu(s) \, ds.$$

We can assume, without loss of generality that Range G = V and we can construct an invertible operator \tilde{G} defined on $L^2(0,T;U)/\ker G$ ([1]). Then, the control can be introduced

$$u(s) = \tilde{G}^{-1} \left[v - \int_0^T U(T, s) F(s, x_s(\phi)) \, ds \right] (s).$$

This control is substituted into equation (3) to provide the operator

$$\Phi x_{t}(\phi)(0) = \int_{0}^{t} U(t,s)F(s,x_{s}(\phi)) ds
+ \int_{0}^{t} U(t,s)B\tilde{G}^{-1} \left[v - \int_{0}^{T} U(T,s)F(s,x_{s}(\phi)) ds\right](s)ds$$

Notice that $\Phi_{x_T}(\phi)(0) = v$, which means that the control u steers the nonlinear system from the origine to v in time T provided we can obtain a fixed point of the nonlinear operator Φ . We now define

$$\Phi_1 x_t(\phi)(0) = \int_0^t U(t,s) F(s,x,\phi) ds$$

and

$$\Phi_2 x_t(\phi)(0) \, = \, \int_0^t \, U(t,s) B \tilde{G}^{-1} \Big[v - \int_0^T \, U(T,s) F(s,x_s(\phi)) \, ds \Big](s) \, ds.$$

We can now employ Theorem 3 with

$$S = \{x_t(\phi)(\cdot) \in C : ||x_t(\phi)|| \leq \gamma\}.$$

Then the set S is closed, bounded and convex. From the definition,

$$\begin{split} \Phi x_{t}(\phi)(0) &= \Phi_{1}x_{t}(\phi)(0) + \phi_{2}x_{t}(\phi)(0) \\ &= \int_{0}^{t} U(t,s)F(s,x_{s}(\phi)) \, ds \\ &+ \int_{0}^{t} U(t,s)B\tilde{G}^{-1} \Big[v - \int_{0}^{T} U(T,s)F(s,x_{s}(\phi)) \, ds \Big](s) \, ds. \end{split}$$

Thus for any $x_t(\phi)(\cdot) \in S$,

$$\begin{split} \|\Phi x_{t}(\phi)(\theta)\|_{X} &= \|\Phi x_{t+\theta}(\phi)(0)\| \\ &= \left\| \int_{0}^{t+\theta} U(t+\theta,s)F(s,x_{s}(\phi)) \, ds \right. \\ &+ \int_{0}^{t+\theta} U(t,s)B\tilde{G}^{-1} \left[v - \int_{0}^{T} U(T,s)F(s,x_{s}(\phi)) \, ds \right](s) \, ds \right\| \\ &\leq \|p\|_{L^{2}(0,T;X)} \|F(s,x_{s}(\phi)\|_{L^{2}(0,T;X)} + L\|v\|_{L^{2}(0,T;U)} \\ &+ L\|q\|_{L^{2}(0,T;X)} \|F(s,x_{s}(\phi))\| \\ &\leq (c+Ld)r(t)\|x_{s}(\phi)\|_{C} + L\|v\|_{L^{2}(0,T;X)} \\ &\leq k\gamma + (1-k)\gamma = \gamma, \quad -h \leq \theta \leq 0. \end{split}$$

Hence

$$\sup_{-h \le \theta \le 0} \|\Phi x_t(\phi)(\theta)\|_X = \|\Phi x_t(\phi)\|_C \le \gamma$$

using (b), (c), (d), and (e). Hence $\Phi_1 x_t(\phi)(0) + \Phi_2 x_t(\phi)(0) \in S$ for all $x_t(\phi) \in S$, which means that part (i) of Theorem 3 is satisfied.

To show that Φ_1 and Φ_2 are completely continuous. We consider

$$\begin{split} \|\Phi_{1}(x_{t}(\phi) + \eta)(\theta) - \Phi_{1}x_{t}(\phi)(\theta)\|_{X} \\ &= \|\Phi_{1}x_{t+\theta}(\phi) + \eta)(0) - \Phi_{1}x_{t+\theta}(\phi)(0)\|_{X} \\ &= \left\| \int_{0}^{t+\theta} U(t+\theta, s)[F(s, x_{s}(\phi) + \eta) - F(s, x_{s}(\phi))]ds \right\|_{X} \\ &\leq \|p\|_{L^{2}(0,T;X)} \|F(s, x_{s}(\phi) + \eta) - F(s, x_{s}(\phi))\|_{L^{2}(0,T;X)} \\ &\leq \|p\|_{L^{2}(0,T;X)} r(t) \|\eta\|_{C}, \ -h \leq \theta \leq 0, \ 0 \leq t \leq T. \end{split}$$

Hence

$$\sup_{-h \le \theta \le 0} \|\Phi_1(x_t(\phi) + \eta)(\theta) - \Phi_1(x_t(\phi)(\theta))\|_X$$

$$= \|\Phi_1(x_t(\phi) + \eta) - \Phi_1(x_t(\phi))\|_C$$

$$< \|p\|_{L^2(0,T:X)} r(t) \|\eta\|_C \longrightarrow 0$$

as $\eta \to 0$. Thus, we have

$$\begin{split} &\|\Phi_{2}(x_{t}(\phi)+\eta')(\theta)-\Phi_{2}(x_{t}(\phi))(\theta)\|_{X} \\ &=\|\Phi_{2}(x_{t+\theta}(\phi)+\eta')(0)-\Phi_{2}(x_{t+\theta}(\phi)(0)\|_{X} \\ &=\|\int_{0}^{t+\theta}U(t+\theta)B\tilde{G}^{-1}[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi)+\eta')\,ds](s)\,ds \\ &-\int_{0}^{t+\theta}U(t+\theta,s)B\tilde{G}^{-1}[v-\int_{0}^{T}F(s,x_{s}(\phi))\,ds](s)\,ds\Big\|_{X} \\ &\leq L\|q\|_{L^{2}(0,T;X)}\|F(s,x_{s}(\phi)+\eta')-F(s,x_{s}(\phi))\|_{L^{2}(0,T;X)} \\ &\leq L\|q\|_{L^{2}(0,T;X)}r(t)\|\eta'\|_{C}, \quad -h\leq \theta\leq 0, \ 0\leq t\leq T. \end{split}$$

Consequently

$$\sup_{-h \le \theta \le 0} \|\Phi_2(x_t(\phi) + \eta')(\theta) - \Phi_2(x_t(\phi)(\theta))\|_X$$

$$= \|\Phi_2(x_t(\phi) + \eta') - \Phi_2(x_t(\phi))\|_C$$

$$\le L\|q\|_{L^2(0,T;X)}r(t)\|\eta'\|_C \longrightarrow 0$$

as $\eta' \to 0$. Thus Φ_1 and Φ_2 are continuous.

Using the Arzela-Ascoli Theorem we show that Φ_2 maps S into a precompact subset of S. We consider

$$\Phi_2 x_t(\phi)(\theta) = \int_0^{t+\theta} U(t+\theta,s) B\tilde{G}^{-1} \Big[v - \int_0^T U(T,s) F(s,x_s(\phi)) ds \Big](s) ds$$

We now define

$$\begin{split} &\Phi_{2-\epsilon}x_t(\phi)(\theta)\\ &=\int_0^{t+\theta-\epsilon}U(t+\theta,s)B\tilde{G}^{-1}\Big[v-\int_0^TU(T,s)F(s,x_s(\phi))ds\Big](s)ds \end{split}$$

for all $(x(\phi))_t \in S$. Then

$$\Phi_{2-\varepsilon}x_t(\phi)(\theta) = U(t+\theta, t+\theta-\varepsilon) \int_0^{t+\theta-\varepsilon} U(t+\theta-\varepsilon, s) B\tilde{G}^{-1} \Big[v - \int_0^T F(s, x_s(\phi)) ds \Big](s) ds.$$

By hypothesis (f), $U(t+\theta,t+\theta-\varepsilon)$ is a compact operator. Thus the set

$$K_2[x_t(\phi)(\theta)] = \{\Phi_{2-\epsilon}x_t(\phi)(\theta); x_t(\phi) \in S\}$$

is precompact. Also

$$\begin{split} &\|\Phi_2 x_t(\phi)(\theta) - \Phi_{2-\varepsilon} x_t(\phi)(\theta)\|_X \\ &= \Big\| \int_{t+\theta-\varepsilon}^{t+\theta} U(t+\theta,s) B \tilde{G}^{-1} \Big[v - \int_0^T U(T,s) F(s,x_s(\phi)) ds \Big](s) ds \Big\|_X \\ &\leq L(\varepsilon) \{ \|v\|_{L^2(0,T;X)} + dr(t) \|x_s(\phi)\|_C \} \longrightarrow 0 \ \text{as } \varepsilon \to 0. \end{split}$$

Hence

$$\sup_{-h \le \theta \le 0} \|\Phi_2 x_t(\phi)(\theta) - \Phi_{2-\varepsilon} x_t(\phi)(\theta)\|_X
= \|\Phi_2 x_{t+\theta}(\phi) - \Phi_{2-\varepsilon} x_{t+\theta}(\phi)\|_C
\le L(\varepsilon) \{\|v\|_{L^2(0,T;X)} + dr(t)\|x_s(\phi)\|_C\} \longrightarrow 0$$

as $\varepsilon \to 0$. Thus there are precompact sets arbitrarily close to the set

$$K_2[x_t(\phi)(\theta)] = \{\Phi_2 x_t(\phi)(\theta); x_t(\phi) \in S\}$$

and therefore $K_2[x_t(\phi)(\theta)]$ is precompact.

We next show that Φ_2 maps the function in S into an equicontinuous family of functions. For equicontinuity from the left we take $t > \varepsilon > t' > 0$ then

$$\begin{split} &\|\Phi_{2}x_{t}(\phi)(\theta)-\Phi_{2}x_{t-t'}(\phi)(\theta)\|_{X} \\ &= \left\|\int_{0}^{t+\theta}U(t+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \\ &-\int_{0}^{t-t'+\theta}U(t-t'+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &\leq \left\|\int_{0}^{t+\theta-\epsilon}U(t+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &-\int_{0}^{t+\theta-\epsilon}U(t-t'+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &+\left\|\int_{t+\theta-\epsilon}^{t+\theta}U(t+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &+\left\|\int_{t+\theta-\epsilon}^{t+\theta-t'}U(t+\theta-t',s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &\leq \left\|U(t+\theta,t-t'+\theta)\int_{0}^{t+\theta-\epsilon}U(t-t'+\theta,s)B\tilde{G}^{-1} - \left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &-\int_{0}^{t+\theta-\epsilon}U(t-t'+\theta,s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &+\left\|\int_{t+\theta-\epsilon}^{t+\theta-t'}U(t+\theta-t',s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \\ &+\left\|\int_{t+\theta-\epsilon}^{t+\theta-t'}U(t+\theta-t',s)B\tilde{G}^{-1}\left[v-\int_{0}^{T}U(T,s)F(s,x_{s}(\phi))ds\right](s)ds \right\|_{X} \end{split}$$

Young Chel Kwun, Jong Yeoul Park and Jong Won Ryu

$$\leq \|U(t+\theta,t-t'+\theta)-I\| \int_0^{t+\theta-\varepsilon} \|U(t-t'+\theta,s)B\tilde{G}^{-1} \cdot \left[v-\int_0^T U(T,s)F(s,x_s(\phi))ds\right](s) \|_X ds$$

$$+ \int_{t+\theta-\varepsilon}^{t+\theta} \|U(t+\theta,s)B\tilde{G}^{-1}\left[v-\int_0^T U(T,s)F(s,x_s(\phi))ds\right](s) \|_X ds$$

$$+ \int_{t+\theta-\varepsilon}^{t+\theta-t'} \|U(t+\theta-t',s)B\tilde{G}^{-1}\left[v-\int_0^T U(T,s) \cdot F(s,x_s(\phi))ds\right](s) \|_X ds$$

$$\cdot F(s,x_s(\phi))ds \Big](s) \|_X ds$$

$$\leq \|U(t+\theta,t-t'+\theta)-I\|L(t+\theta-\varepsilon)\|u\|_X$$

$$+ L(\varepsilon)\|u\|_X + L(\varepsilon-t')\|u\|_X \longrightarrow 0$$

as $\varepsilon \to 0$, by $L(t) \to 0$ as $t \to 0$ and U(t,s) is continuous in s and t. Thus we have

$$\sup_{-h \le \theta \le 0} \|\Phi_2 x_t(\phi)(\theta) - \Phi_2 x_{t-t'}(\phi)(\theta)\|_X$$

= $\|\Phi_2 x_t(\phi) - \Phi_2 x_{t-t'}(\phi)\|_C \longrightarrow 0 \text{ as } t' \to 0.$

The equicontinuity from the right is similar. Finally we must have a Lipschitz condition for the operator Φ_1 . Consider for $x_t(\phi)$, $\hat{x}_t(\phi) \in S$,

$$\begin{split} & \|\Phi_{1}x_{t}(\phi)(\theta) - \Phi_{1}\hat{x}_{t}(\phi)(\theta)\|_{X} \\ & = \left\| \int_{0}^{t+\theta} U(t,s)[F(s,x_{s}(\phi)) - F(s,\hat{x}_{s}(\phi))]ds \right\|_{X} \\ & \leq \|p\|_{L^{2}(0,T;X)} \|F(s,x_{s}(\phi)) - F(s,\hat{x}_{s}(\phi))\|_{X} \\ & \leq cr(t) \|x_{s}(\phi) - \hat{x}_{s}(\phi)\|_{C}. \end{split}$$

Consequently,

$$\|\Phi_1 x_t(\phi) - \Phi_1 \hat{x}_t(\phi)\|_C \le cr(t) \|x_s(\phi) - \hat{x}_s(\phi)\|_C.$$

Therefore, by Theorem 3, the proof of Theorem 4 is complete.

Controllability for delay volterra system

References

- Carmichael, N. and Quinn, M.D., An Approach to Nonlinear Control problems using Fixed-Point Methods, Degree Theory and Pseudo-Inverses, Numer. Funct. Anal. and Optimiz. 7(2&3), 197-219 (1984-85).
- Naito, K. and Park, J.Y., Approximate Controllability for Trajectories of a Delay Volterra Control System, Journal of Optimization Theory and Applications, Vol.61, No.2, May 1989.
- 3. Nussbaum, R.P., The Fixed Point Index and Asymptotic Fixed Point Theorems for K-set Contractions, Bull. Amer. Math. Soc., Vol 75, 490-495, 1969.
- 4. Zhou, H.X., A Note an Approximate Controllability for Semilinear One-Dimensional Heat Equation, Appl. Math. Optim. 8, 275-285, 1982.

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, PUSAN 604-714, KOREA

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, PUSAN 604-714, KOREA