SOME PROPERTIES OF HYPOELLIPTIC PSEUDODIFFERENTIAL OPERATORS

LEE-CHAE JANG

I. Introduction

Let m, ρ and δ be real numbers; $0 \le \delta \le 1, 0 \le \rho \le 1$. The class $S_{\rho,\delta}^m(\mathbf{R}^n \times \mathbf{R}^n)$ consists of functions $\sigma(x,\zeta) \in C^\infty(\mathbf{R}^n \times \mathbf{R}^n)$ such that for any multi-indices α , β and any compact set $K \subset \mathbf{R}^n$ a constant $C_{\alpha,\beta,K}$ exists for which

(1.1)
$$\left| \partial_{\zeta}^{\alpha} \partial_{x}^{\beta} \sigma(x,\zeta) \right| \leq C_{\alpha,\beta,K} |\zeta|^{m-\rho|\alpha|+\delta|\beta|}$$

where $x \in K$ and $\zeta \in \mathbf{R}^n$. Instead of $S_{1,0}^m(\mathbf{R}^n \times \mathbf{R}^n)$ we simply write $S^m(\mathbf{R}^n \times \mathbf{R}^n)$. We also put $S^{-\infty} = \bigcap_m S^m$.

A function $\sigma(x,\zeta) \in C^{\infty}(\mathbf{R}^n \times \mathbf{R}^n)$ is called a hypoelliptic symbol if the following conditions are fulfilled:

(i) there exist real numbers m_0 and m, such that for an arbitrary compact set $K \subset \mathbf{R}^n$ one can find positive constants R, C_1 and C_2 such that

$$(1.2) C_1|\zeta|^{m_0} \le |\sigma(x,\zeta)| \le C_2|\zeta|^m$$

where $|\zeta| \geq R$ and $x \in K$.

(ii) there exist numbers ρ and δ , with $0 \le \delta < \rho \le 1$, and for each compact set $K \subset \mathbf{R}^n$ a positive constant R such that for any multi-indices α and β

(1.3)
$$\left| \left[\partial_{\zeta}^{\alpha} \partial_{x}^{\beta} \sigma(x,\zeta) \right] \sigma^{-1}(x,\zeta) \right| \leq C_{\alpha,\beta,K} |\zeta|^{-\rho|\alpha|+\delta|\beta|}, \quad |\zeta| \geq R, \ x \in K$$

with some constant $C_{\alpha,\beta,K}$.

Received July 4, 1990. Revised March 4, 1991.

Denote by $HS_{\rho,\delta}^{m,m_0}(\mathbf{R}^n \times \mathbf{R}^n)$ the class of symbols satisfying (1.1) and (1.2) for fixed m, m_0 , ρ and δ . From (1.1) and (1.2), it obiously follows that $HS_{\rho,\delta}^{m,m_0}(\mathbf{R}^n \times \mathbf{R}^n) \subset S^m(\mathbf{R}^n \times \mathbf{R}^n)$ (see p. 38 of Shubin [6]). We will denote by $HL_{\rho,\delta}^{m,m_0}(\mathbf{R}^n)$ the class of properly supported pseudodifferential operator T for which $\sigma_T(x,\zeta) \in HS_{\rho,\delta}^{m,m_0}(\mathbf{R}^n \times \mathbf{R}^n)$.

DEFINITION 1.1. A pseudodifferential operator T is called to be hypoelliptic if there exists a properly supported pseudodifferential operator $T_1 \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$ such that $T = T_1 + R_1$, where $R_1 \in L^{-\infty}(\mathbf{R}^n)$, i.e., R_1 is an operator with infinitely differentiable kernel.

REMARK 1.2. If $T \in HL_{\rho,\delta}^{m,m_0}(\mathbb{R}^n)$ and if $m = m_0$, then it follows from proposition 5.1 in Shubin [1] that T is elliptic.

The aim of this paper is to study some properties of hypoelliptic pseudodifferential operators on $L^p(\mathbf{R}^n)$, $1 . In section 2, we prove that if <math>T \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$ and D(T) = S, then T is closable. Here S is the Schwartz class. This result is proposition 3.1 in Wong [5] if $\rho = 1$, $\delta = 0$, and $m = m_0$. Also, we prove that if $T \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$ and if there exist two positive constants C, C' such that (2.2) holds, then $D(T_{\min}) = H^{m,p}$. For $\rho = 1$, $\delta = 0$, and $m = m_0$, it follows from Theorem 3.5 in Wong [5] that $D(T_{\min}) = H^{m,p}$. If $\sigma_T \in S^m(\mathbf{R}^n \times \mathbf{R}^n)$ is any symbol independent of x, then it follows from theorem 2.4 in Wong [3] that the minimal and the maximal operators associated with T coincide in $L^p(\mathbf{R}^n)$, $1 \leq p < \infty$. See Chapter 4 of Schecter [2] for the minimal and maximal operators.

REMARK 1.3. If $T \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$, then it follows from proposition 5.3 in Schubin [1] that $T^* \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$, where T^* is the adjoint of T.

II. Main results

PROPOSITION 2.1. If $T \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$ and the domain D(T) of T is S, then T is closable.

Proof. Let $\{\Phi_k\}$ be a sequence of functions in S such that $\Phi_k \to 0$, $T\Phi_k \to f$ in $L^p(\mathbf{R}^n)$ as $k \to \infty$. Then for any function ψ in S, we

have $(T\Phi_k, \psi) = (\Phi_k, T^*\psi)$. Let $k \to \infty$. Then we have $(f, \psi) = 0$ for all function ψ in S. Since S is dense in $L^p(\mathbf{R}^n)$, it follows that f = 0.

REMARK 2.2. A consequence of Proposition 2.1 is that $T: S \to L^p(\mathbf{R}^n)$ has a closed extension in $L^p(\mathbf{R}^n)$. We denote the smallest such by T_{\min} and call it the minimal operator of T. It can be shown easily that the domain $D(T_{\min})$ of T_{\min} consists of all functions u in $L^p(\mathbf{R}^n)$ for which a sequence $\{\Phi_k\}$ in S can be found such that $\Phi_k \to u$ in $L^p(\mathbf{R}^n)$ and $T\Phi_k \to f$ for some f in $L^p(\mathbf{R}^n)$. Moreover, $T_{\min}u = f$, see again Wong[5].

REMARK 2.3. Now, it follows from Schechter [2, pp. 60-61] that there exist the maximal extension of $T \in HL^{m,m_0}_{\rho,\delta}(\mathbf{R}^n)$. Indeed, we can define another closed extension of T_1 of T on S as follows. We say that $u \in D(T_1)$ and $T_1u = f$ if u and f are in $L^p(\mathbf{R}^n)$ and $(u, T^*\psi) = (f, \psi)$ for all $\psi \in S$. It is clear from the definition that T_1 is a closed extension of T on S. It is called the maximal or weak extension of T. It is the maximal in the sense that it is the largest closed extension having S in the domain of its adjoint. We denote T_1 by T_{\max} . It is clear that $D(T_{\max})$ consists of all function u in $L^p(\mathbf{R}^n)$ for which T_u is in $L^p(\mathbf{R}^n)$ (see Wong [5, Remark 3.3]).

The main result in this paper is that if $T \in HL^{m,m_0}_{\rho,\delta}(\mathbb{R}^n)$ and if there exist two positive constants C, C' such that (2.2) holds, then $D(T_{\min}) = H^{m,p}$. To this end, we recall a very important result in the theory of pseudodifferential operators.

THEOREM 2.4. Let $T \in HL^{m,m_0}_{\rho,\delta}(M)$, with either $1 - \rho \leq \delta < \rho$ or $\rho < \delta$ and M a domain in \mathbb{R}^n . Then there exists an operator $Q \in HL^{-m,-m_0}_{\rho,\delta}(M)$, such that

$$(2.1) QT = I + R_1, TQ = I + R_2$$

where $R_j \in L^{-\infty}(M)$, j = 1, 2, and I is the identity operator.

For a proof of Theorem 2.4, see Theorem 5.1 of Schubin [1]. We recall that $H^{s,p}$ is the L^p Sobolev space of order s. See Ch. 2, section 4 of Schechter [2] for a discussion of these spaces.

Lee-chae Jang

THEOREM 2.5. Let ρ, δ be as in Theorem 2.4 and let $T \in HL^{m,m_0}_{\rho,\delta}(\mathbb{R}^n)$. If there exist two constants C, C' such that

then $D(T_{\min}) = H^{m,p}$.

Proof. If $u \in H^{m,p}$, then we can take a sequence $\{\Phi_k\}$ of functions in S such that $\Phi_k \to u$ in $H^{m,p}$. Hence, by (2.2), $\{T\Phi_k\}$ and $\{\Phi_k\}$ are Cauchy sequences in $L^p(\mathbf{R}^n)$. So $\Phi_k \to u$ and $T\Phi_k \to f$ for some u and f in $L^p(\mathbf{R}^n)$. Hence $u \in D(T_{\min})$, and $T_{\min}u = f$. On the other hand, if $u \in D(T_{\min})$, then we can find a sequence $\{\Phi_k\}$ in S such that $\Phi_k \to u$ in $L^p(\mathbf{R}^n)$ and $T\Phi_k \to f$ for some f in $L^p(\mathbf{R}^n)$. Hence, $\{\Phi_k\}$ and $\{T\Phi_k\}$ are Cauchy sequences in $L^p(\mathbf{R}^n)$, so, by (2.2), $\{\Phi_k\}$ is a Cauchy sequence in $H^{m,p}$. Since $H^{m,p}$ is complete, $\Phi_k \to v$ for some v in $H^{m,p}$. Suppose $m \geq 0$. Then the inclusion map $H^{m,p} \to L^p(\mathbf{R}^n)$ is continuous. Thus, $\Phi_k \to v$ in $L^p(\mathbf{R}^n)$. Hence u = v, and consequently lies in $H^{m,p}$. If m < 0, then the inclusion map $L^p(\mathbf{R}^n) \to H^{m,p}$ is continuous. Thus, $\Phi_k \to u$ in $H^{m,p}$. Hence u = v, and consequently lies in $H^{m,p}$.

REMARK 2.6. Since T_{max} is the maximal closed extension of T, $H^{m,p}$ is contained in the domain of T_{max} .

References

- M. A. Schubin, Pseudodifferential operators and spectral theory, Springer-Verlag, New york, 1978.
- M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971.
- 3. M. W. Wong, L^p -spectra of strongly Carleman pseudodifferential operators, J. Func. Analysis 44 (1981), 163-173.
- 4. _____, Fredholm pseudodifferential operators on weighted Sobolev spaces, Ark. Mat. 21 (1983), 271-282.
- 5. _____, On some spectral properties of elliptic pseudodifferential operators, Pro. Amer. Math. Soc. 99 (1987), 683-689.

DEPARTMENT OF APPLIED MATHEMATICS, KON-KUK UNIVERSITY, CHUNGJU 380-701, KOREA