Bull. Korean Math. Soc. 28(1991), No. 2, pp. 219-224

ON A QUESTION OF KIM CONCERNING
CERTAIN GROUP PRESENTATIONS

RICHARD M. THOMAS

Ann-Chi Kim recently posed the question of determining when the
group G(n) defined by the presentation

<mlax2a 9 Tn L TiTi42 = T4 (Z € Zn))

1s infinite; the purpose of this paper is to answer his question by showing
that G(n) is infinite if and only if n > 6. It was shown in [8] that G(1)
is trivial, and that G(2) is isomorphic to the cyclic group C3 of order
3, G(3) to the quaternion group Qs, G(4) to SL(2,3) and G(5) to
SL(2,5); on the other hand, G(6) is infinite, as G(6)/G(6) is infinite.
So the onus is on us to show that G(n) is infinite for n > 7; in fact,
G(n) has a free subgroup of rank 2 for n > 7, unlike G(6), which is
metabelian. The case n = 7 has been solved independently by David
Gill, who used some nifty Tietze transformations to show that there is
a subgroup H of index 7 in G(7) and a homomorphism from H onto
the modular group.

The groups G(n) bring to mind the Fibonacci groups F(2,n) de-
fined by the presentations

(T1,@2,* ,Tn : TiTit1 = Tit2 (2 € Ly)),

which are known to be infinite for n = 6 [4] and n > 8 [2, 9, 10], and
not otherwise (2, 3, 4, 5]; see [13] for a recent survey of these groups.
Some of the techniques useful in dealing with the Fibonacci groups are
appropriate to the groups G(n) also.

Let A(n) be the group G(n)/G(n)'; we may use the techniques of [6]
and [7] to work out the order of A(n). If f(z) is the polynomial z? —z+1,
then A(n) has order £ [[{f(¢) : (™ = 1}; so A(n) is infinite if and only
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if (> — ¢ +1 = 0 for some n* root ¢ of unity. Now (2 — ¢ +1=101is
equivalent to (? + 1 = (, and hence to (* + (2 +( +1 = ¢% 4 ¢ with
¢ # —1. So A(n) is infinite if and only if ¢ = —1 # ( for some (; in

other words, we have:
THEOREM A. A(n) is infinite if and only if 6 divides n.

As with the Fibonacci groups, there is an automorphism of G(n)
of order dividing n permuting the z; in a cycle of length n. We may
therefore form the semi-direct product of G(n) with a cyclic group (t)
of order n to get the group I(n) with presentation

(z,t catT it =t gt 4" = 1> ,

where z denotes z; (say). The relation xt~2xt? = t~zt is equivalent
to #t~%ztz 1t = 1. We introduce a new generator u := z¢t~!, and then
delete z = ut, to get

(u,trututu Mt =17 =1).

Now the relation ut~'utu™'t =1 is equivalent (tu™!) lu(tu~!) = ¢t~!,
and, given t" = 1, we also have that «™ = 1. Since the relation
ut lutuTt = 1 is equivalent to tu~ltutlu = 1, we see that there
is an automorphism interchanging u and t. We form the semi-direct
product of I(n) with a cyclic group {a) of order 2 to get the group
K(n) with presentation

<a,t ca? =t" = atat 'atatat lat = '.> .
We are now in a position to prove the following result:

THEOREM B. G(n) is infinite if and only if n > 6.

Since G(n) is finite for n < 5 and G(6) is infinite, it is enough
to show that K(n), and hence G(n), is infinite for n > 7. The rela-
tion atat~'atatat~'at = 1 is equivalent to (at~'atat)? = 1; our strat-
egy is to find matrices 4 and T in SL(2,C) such that A? = T" =
(AT~'ATAT)? = —1I, but such that AT has infinite order. If we let

K(n), denote the group with presentation

<a,t,z ca? = t" = atat 'atatat lat = z, 2% = 1>,

220



On a Question of Kim Concerning Certain Group Presentations

then the subgroup (A, T') of SL(2, C) would be an infinite homomorphic
image of K(n), so that the subgroup (A4, T) of PSL(2,C) (with the
usual abuse of notation) would be an infinite homomorphic image of
K(n).

We make use of two facts here that are of great help when tackling
this sort of problem; compare [1] and [12] for example. Firstly, a matrix
M in SL(2,C) has finite order m > 2 if and only if the trace Tr(M)
of M is of the form a + a~! for some primitive m** root a of unity.
Secondly, we have the identity Tr(UV) + Tr(U V) = Tr(U) Tr(V) for
any matrices U and V in SL(2,C). Writing U as WV, this becomes

Te(WV2) + Te(W) = Te(WV) Te(V),

since Te(VIW V) = To(W 1) = Te(W). Now put W = AT~! and
V = AT to get

Tr(AT'ATAT) + Tr(AT ') = Tr(AT'AT) Tr(AT).

~10 B a?

AT = ( 8 °") ,A? = T" = —J and A~! = —A. Then Tr(AT"}) =
a 0

Tr(TA™') = Tr(~TA) = — Tr(AT), and we have

Let A := (0 1) and T := (a 0 ), where a = e™/™, so that

Tr(AT'ATAT) = [Tr(AT™'AT) + 1] Tr(AT).

Now Tr(AT 'AT)+Tr(TA™'AT) = Tr(AT~") Tr(AT) and Tr(AT ")
= — Tr(AT) as above, so that

Tr(ATAT) = — Tr(AT)? — T(T?) = — Te(AT)? — (a® + a™2),

and then Tr(AT'ATAT) = [1 — 8% — (e® + a™%)]B. So we want 1 —
B2 —(a®+a72)=0,ie.

ﬂz:i:\/l-—2cos (%})
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Since n > 7, B is non-zero and imaginary. Now, since
2 -1
2_(B°-1 Pa
(amy = (0 P,
AT does not have order 1 or 2; so, for AT to have finite order, we would
need to have § = v + 77! for some primitive m*® root v of unity with
m > 2. But v 4+ 7! would be real, while 8 is imaginary; so AT has
infinite order for n > 7; so K(n), and hence K(n), is infinite.
In fact, we can say more than this. Let

M::AT:(ﬂ 0‘_1), N::AT‘I:(_ﬂ ").

—a 0 a1 0

Recall that an element U of SL(2,C) is said to be elliptic if Tr(U) €
R and | Tr(U)| < 2, and a subgroup S of SL(2,C) is said to be elliptic
if all elements of S, apart from +I, are elliptic. Since 8 ¢ R, we see
that (M, N} is not elliptic. Also, a subgroup S of SL(2,C) is said to
be elementary if the commutator of any two elements of infinite order
has trace 2, and to be discrete if it does not contain any convergent
sequence of distinct elements. Now, since 8 ¢ R, M and N have infi-
nite order, as was pointed out above, and we may readily check that

N='M~'NM has trace —2cos (3), and thus (M, N) is not elemen-
tary. So, by [11], there is a generating pair {P, @} for (M, N) such that
<Pk, Qk> 1s a discrete free subgroup of rank 2 for sufficently large k. So
K (n) has a homomorphic image (A, T) = K(n)/N with a free subgroup
<EN,JN> of rank 2, and then I(’(n) has a free subgroup H:= <6,J>
of rank 2. If ¢ and d are elements of K(n) such that c(z) = & and
d{z) = d, then H := {c,d) is a free subgroup of K(n) of rank 2. Since
G(n) has finite index in K(n), H N G(n) is of finite index in H, and
hence is a non-cyclic free subgroup of G(n); so we have:
THEOREM C. G(n) has a free subgroup of rank 2 forn > 7.

We now turn to the case n = 6. We know that G(6) is infinite, as
G(6)/G(6)" is infinite, but we can say a little more. Let us consider the
presentation

<$1,1‘2,$3,$4,$5,$6 S X1¥3 = T2, T2T4 = T3, T3T5 = T4,

Tyl = IT5, T5T)] = T'g, TeTl2 — 3?1)
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for G(6). We may eliminate the generator ¢ = z57; to get

(T1,T2,23,%4,%5 : T1T3 = Tn, ToTq4 = T3, T3T5 = T4,

T4T5T) = s, TST1T2 = T1) -
Now eliminate z4 = z3z5 to get
<Z‘1,.’L‘2,$3,.’E5 L T1T3 = T2, T2XT3T5 = I3, 131‘52.’1:1 =I5, T5T1T2 = IIZ]> .
Next, eliminate z3 = z1z3 to get

. 2. _ 2. 2. _
<$1,933,$5 PT1T3 Ts = T3, T3T5 T =I5, T5T) T3 = $1>-

1

We now eliminate z5 = z;z3 12; 72 to get

. 2 —1 -2
<:121,$3 I T1X3 T1X3 I = I3,.

— - — -1 —1 —2
T3zr1xr3 11’1 113 1(1,‘1 = I1x3 I >

Since we're getting tired of the subscripts, we rewrite z; as @ and 3 as
b to get

<a,b cab?ab™la7? ! = bab la b aba! = 1) .

Introduce ¢ := aba™!; the relation bab~'a='b~laba~' = 1 is then
equivalent to be™!'6~'c = 1, and hence to [b,c] = 1, and the relation
ab?ab~'a=2b! =1 to c*ac™'a'b"! = 1, and hence to aca™! = b~ ¢?;

so we have the presentation
{a,b,c:aba™" =¢, aca™ =b7'c%, [b, ] = 1).
We see that N := (b,c) is a normal abelian subgroup isomorphic to
Coo X Coo, and that G(6)/N is isomorphic to Cuo; s0 we have
THEOREM D. G(6) is an infinite metabelian group.
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