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DUAL ALGORITHM FOR L; ISOTONIC
OPTIMIZATION WITH WEIGHTS
ON A PARTIALLY ORDERED SET

SEIYOUNG CHUNG

1. Introduction

For a given function f € F and a set of functions J C F , the
problem of isotonic optimization is to determine an element in the set
nearest to f in some sense. Specifically, let X be a partially ordered
finite set with a partial order < and, let 7 = F(X) be the linear space
of all bounded real valued functions on X. A function g € F is said to
be an isotonic function if g(z) < g(y) whenever z,y € X and z < y.
Let J = J(X) be the convex cone of isotonic functions on X. As a
measure of distance, define a weighted L, norm on F by

IBll, = > lhefw(z), 1<p<oo,h€F,
reX
IBll, = max|h(z)lw(z),  p=ocoh€F,

for a given weight function w € F, w(z) > o > 0 for all z € X.

These isotonic optimization problems are motivated mainly because
of their applications to order restricted statistical analsis. The Ly ver-
sion of this problem has been thoroughly discussed. See [1,Chapters 1
and 2 |. The Minimum Lower Sets Algorithm (MLSA), which is used
most often, is given in [2] and [3]. For the case of total order, the Pool
Adjacent-Violators Algorithm and the Up-and-Down Blocks Algorithm
were developed by J.B. Kruskal [4] and by Ayer et al. [5], respectively.
The L, problems, 1 < p < oo, are considered by Barlow and Ubhaya in
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[13], and by Ubhaya in [14], [15]. The L; problem has been considered
in [6] through [12]). The MLSA originally developed for the L; problem
is modified in [12] so that it can be applied to the more general cases
which include the L; problem as a special case. An algorithm, called
Dual Algorithm, for the L, problem with w = 1 were developed by S.
Y. Chung in [16]. The linearity and hence the duality of the problem
are much used in the latter but not in the former. The L, isotonic
optimization with weights under consideration in this paper is:

(P): Given f € F, find g* € F, if one exists, such that
If =gl =inf{llf —gll, 1 g € F}.

To improve the efficiency over the modified MLSA, we try to take
advantage of linearity. The dual of the problem (P) and the duality
theorem are proposed. An algorithm which utilizes Network Flows is
constructed that solves both the primal and the dual simultaneously
after a finite number of iterations. It is also used to prove the existency
of an optimal solution ¢* and the duality theorem.

2. Dual problem

For each r € X, the immediate successors of z and the immedi-
ate predecessors of z are the sets U(z) = {y € X | z < y,z #
y and thereisno z € X suchthat z < z < y} and L(z) = {y €
X |y <z, o # yandthereisnoz € X suchthaty € z < r},
respectively. Define the set £ by £ = {(z,y) | z € X,y € U(z)}. We
now rephrase the problem (P):

min||f — g||, subject to
(P —1):¢(z) < g(y) whenever (z,y) € L.

Let h and F be two functions defined on X and £ repectively. Con-
sider the problem :

(D) : max Zh(x)f(a:) subject to
reX
(D-1) : —w(z) < h(z) Sw(z), € X,
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(D-2) : F(z,y) >0, (z,y) € L,
(D-3) : h(z) = Z F(z,y) - Z F(z,z), z € X.

yeU(z) zeL(z) :

Tt turns out that the problems (P) and (D) are dual to each other. We
will make this more precise. Any function g € J 1s said to be feasible
for the primal (P) and any functions h on X and F on L satisfying the
constraints (D-1), (D-2) and (D-3) are said to be feasible for the dual
(D). Define sgn(z) =1 if £ > 0;0 if z = 0; -1 if £ < 0. Two conditions,
which turn out to be optimal criteria, are defined as:

Condition A : h(z) = w(z)sgn(f(z) — ¢(z)) for all z with

f(z) # g(z).

Condition B : Zh(w)g(m) =0.
zeX

LEMMA. Let h be feasible for the dual (D) and g for the primal (P).
The following inequality then holds:

S h(@)f(z) < I~ gllss

zeX

where equality holds if and only if both Conditions A and B are satis-
fied.

To prove Lemma, we define an incidence function e; on L for each
zin X:
lifz =y,

ee(y,2) =< —lifz =2,
0 otherwise,

and we rephrase the constraint (D-3) as:

h(z)= > F(y,2)esly,z), T€X
(y,2)€l
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Proof of Lemma. It follows directly from the constraint (D-1) that
the right hand side is greater than or equal to Z h{z)[f(z)— g(z)] and

that they are equal to each other if and only 1f Condltlon A holds. To
complete the proof, it suffices to show that 3~ h(z)g(x) < 0.
zeX

Y oh@g@) =D g | Y Fly,2)ea(y,2)

zeX reX (y,2)EL
3 F(y,z)[zez(y, Z)g(x)}
(y,2)ec zeX
= > F(y,2)[g(y) — g(=)]
(y,2)ec
<0,

where the inequality comes from the constraints (P-1) and (D-2).

We have shown that the minimum of the primal (P) is always greater
than or equal to the maximum of the dual (D) and hence that the
feasible functions are optimal if they are equal. Noting that Condition
B is true if and only if F(y,z)[g(y) — g(2)] = 0 for all (y,z) € £ in the
proof of Lemma, Condition B may be equivalently described as:

Condition B': F(z,y)[g(z) — ¢(y)] = 0 for all (z,y) € L,

which is usually called The Complimentary Slackness Condition for the
primal and dual problem.

DUALITY THEOREM. Under the same assumptions in Lemma,the
functions h and g are optimal if and only if they satisfy both Conditions
A and B.

The sufficiency of Duality Theorem is the immediate consequence of
Lemma. Assume the necessity is proved. It then follows from the above
Lemma that the optimal values are the same. Hence the two problems
are dual to each other. The necessity will be proved by constructing an
algorithm in the next section.
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3. Dual algorithm

Notice that both problems always have the obvious feasible solutions
g =0,h =0 and F = 0, which satisfy Condition B. We thus start with
them, seek improved feasible functions satisfying Condition B and stop
if Condition A is also satisfied.

We may view the given set X with a partial order as a network with
the node set X and with the oriented arc set £. Let us augment this
network by attaching a node, say ¢, and arcs (z¢,2), z € X. From
now on, the nodes in X and arcs in £ are called original and those
attached are called augmented. Let N = X U {29} and 4 = L U Ly,
where Lo = {(z0,z) | z € X}. The network under consideration is the
one with the node set N and with the arc set A. With this setting,
the funcitons h and w on X may be regarded as ones on Ly but the
notations h(z) and w(z) will be kept instead of the ones h(zo,z) and
w(zo, ). Define a function K on A by X =h on Ly and K = Fon L.

We need some introduction of the painted network which is neces-
sary for developing the algorithm here. This material can be found in
Rockafellar [17, Chapters 1 and 2 |.

A path P in a network is a finite sequence : z+, J1,x9,J2, 23, -+, Jk,
zx+1(k > 0), where z; denotes a node, J; an arc and either J; =
(zi,zit1) or Ji = (zis1,zi). When 21 = zx41, we call P a circuit. An
elementary path is a path which uses no node more than once, except
of course for the initial node and the terminal node when the path is
a circuit. Form now on, by a path we mean an elementary path. The
arc Ji in P is said to be traversed positively or negatively according to
whether J; = (z;,zi4+1) or J; = (z;41,;). For 2 path P, P* is the set
of positive arcs in P, P~ the set of negative arcs in P and the incidence
function for P is definde as:

1if J e P*
ep(J)=< —1if Je P~
0 otherwise
For a given node set S in a network, define the sets :
QT =[S, N-5"={(z,y)eA|zeS yeN-S5)
QT =[N-5 ={(z,y)€eA|zeN-S5, ye S},
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and a cut Q in the network as the set Q@ = Q1 U Q~, which is denoted
by @ = [S, N — S]. Define the incidence function egs for a node set S by
es(r)=1ifze€ S;0ifzc ¢ 8S.

By a painted network, we mean a network each arc in which is
painted one of the four colors (green, white, black and red)with the
meaning: the green arc is traversable in either direction, the white arc
only positively, the black arc only negatively and the red arc is for-
bidden. For given two nonempty disjoint node sets Nt and N~ in
the painted network, the Painted Path Problem involves determining a
path P : Nt — N~ such that each arc in P* is green or white and
each arc in P~ is green or black and the Painted Cut Problem is to find
acut @ =[S, N — 5] with N* C § and N~ NS = @ such that each arc
in Q% is red or black and each arc in Q™ is red or white. The Painted
Network Algorithm (PNA) used for the above two problems can be
found in [17, pp 33-35]. The Painted Network Theorem [17, p 39] reads
: For given two nonempty disjoint node sets N* and N~ in the painted
network, one and only one of the painted path problem and the painted
cut problem has a solution. This means that the outcome of PNA is
either a path or a cut, which is used in Step 3 of our algorithm below.

Notice that without loss of generality, one may assume f(z) > 0 for
all z € X. One more assumption is: For any z,y € X with z £ y, a
path P : z — y can be found with the colors disregarded. Otherwise,
one could partition X into two or more subsets for each of which our
assumption is satisfied and solve the same problem for each partition.

Dual Agorithm
Initially, set ¢ = 0,h =0 and F = 0.
Step 1: Given arbitrary functions g and h, set
UN ={z € X | g(z) < f(z),—w(z) < h(z) < w(z)}.
Stop if UN = §.
Step 2: Given arbitrary functions g, h, and F, paint the network:

1) Any original arc (z,y) € £ is painted:
red if g(z) < ¢(y), F(z,y) =0,
white if g(z) = ¢g(y), F(z,y) =0,
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green if g(z) = g(y), F(z,y) > 0.
2) Any augmented arc (zo,z) € Lo is painted;
red i h(z) = w(z) sgalf(z) — g(2)), (&) # 9(a),
black if g(z) = f(z), h(z) = w(z),
white if [g(z) = f(z), h(z) = —w(z)] or
lo(z) < f(2), —w(z) < h(z) <w(z)],
green if g(z) = f(z), ~w(z) < h(z) < w(z).

Step 3: Select z* € UN and apply PNA(Painted Network Algorithm)
with N* = {z*} and N~ = {z¢}. The same node z* should be
selected as long as it is still in UN at next iteration. If PNA
ends up with a circuit P, then go to Step 4. If PNA ends up
with a cut Q@ =[S, N — §], then go to Step 5.

Step 4: Calculate

w(z*) — h(z*)
a =min { w(y*)+ h(y")
F(z,y) for (z,y) € P,
and update K : K' = K + aep.

Go to Step 1.
Step 5 : Calculate

9(y) — g(z) for (z,y) € Q7
B =min< f(z)— g(z) for ¢ with (zo,r) € Q@ and
—w(z) < h(z)

and update g : ¢' = g + Pes.
Go to Step 1.

REMARK 1. Any circuit P has only two augmented arcs (z¢,z*) €
P* and (z0,y*) € P~ because of N* and N~.
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REMARK 2. h and F are updated only when a circuit P at Step 3
and only at the arcs in P but ¢’ = ¢ after a circuit.

REMARK 3. ¢ is updated only after a cut @ at Step 3 and only on
S but A' = h and F' = F after a cut.
Let’s define A;,2 = 1,2,--- |9, subsets of A, as following:

Ay = {(z0,2) € Lo | 9(z) < f(z), —w(z) < hiz) <w(z)},
Az = {(z0,3) € Lo | 9(z) = f(z), —w(z) < Mz) <w(z)},
Az = {(z0,7) € Lo | 9(z) < f(z), h(z) = w(z)},

As = {(z0,7) € Lo | g(z) = f(2), b(z) = —w(z)},

As = {(z0,7) € Lo | 9(z) = f(2), h(z) = w(z)},

As = {(z0,7) € Lo | g(z) > f(2), h(z) = —w(z)},

A7 = {(z,y) € L | g(z) = g(y), F(z,y) =0},

As = {(z,y) € L] g(z) < g(y), F(z,y) =0},

Ag = {(z,y) € L] g(z) = g(y), F(z,y) > 0}.

PROPOSITION 1. Any arc (zo,7) € Lo isin one of A;,1 =1,2,--- .6,
and any arc (r,y) € L is in one of A;,1 = 7,8,9. Furthermore, « in Step
4 and 3 in Step 5 are positive.

Proof. At the beginning, the first assertion holds because of initial
setting and of that f, w > 0 on X. Any original arc (z,y) € P~ is
green and hence F(z,y) > 0. But w(z*)—h(z*) > 0 since z* € UN, and
w(y*) + h(y*) > 0 since (zg,y*) € P~ is green or black. Any original
arc (z,y) € Q7 is red and hence g(y) — g(z) > 0. Any augmented arc
(z0,2) € Q™ is red or white, and thus f(z)—g(z) > 0if —w(z) < h(z).
We therefore have shown that a > 0 and 8 > 0 provided the first
assertion holds. Assume that the first assertion holds before Step 3 at
a certain iteration. Let an arc (zg,z) be in A;. It then is white, and
thus it is in P* if in a circuit P and it is in Q™ if in a cut Q. Remark
1 implies ¢ = z* if (zo,z) € PT. It then follows from the definition
of a and Remark 2 that any (z¢,r) € A; remains in 4; or becomes
belonging to Aj after Step 4. After a cut, ¢'(z) = g¢(z) + B since
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(zo,z) € Q@ implies = € S, and it follows from the definition of 8 and
Remark 3 that any (zo,z) € A; remains in Ay or becomes belonging to
A, after Step 5. By the similar manner, we can show where each arc
belongs to after updating h,g and F at Step 4 or Step 5. See the table
below:

Ay Ay | A3 | A4 As Ag Aq As | Ag
Az, Az | Ay | As | A6 | A2, Ay As, Ay | A7 | A7

In the above table, each A; is assumed to be in the second row of
the i-th column. For example, the first column reads: Any arc in A;
before Step 3 is contained in A;, A; or Aj; after Step 3.

By the result of Proposition 1, we may revise the painting condition
for the red original arc in Step 2:

red if g(z) < g(y).

PROPOSITION 2. The updated functions ¢g',h' and F' are feasible.

Proof. It is an easy corollary of Proposition 1 that (D-1) and (D-2)
are satisfied by &' and F' and (P-1) by ¢'. Noticing Remarks 2 and 3,
we see that it suffices to show that (D-3) holds for A’ and F' after a
circuit P. For any node z(# z*,y*) in P, there are only two arcs, say
Ji and Ja, in P that use the node z. Let z; and z3 be the nodes of Ji
and J; respectively. If both J; and J; are either in P* orin P, then
2, € U(z) and x5 € L(z) or vice versa. If one of J; and J; is in P*
and the other in P~ the nodes z; and z2 should be either in U(x) or
in L(z). In any case, the right hand side of (D-3) remains unchanged
by updated F’, and hence h' = h except at z*, y* implies (D-3) for
this case.There is only one original arc J in P that uses the node z*.
K Je Pt J = (z*y) for y € U(z*) and only the first term in the
right hand side of (D-3) is increased by a. If J € P7,J = (y,z*) for
y € L(z*) and the second term is increased by a. But h' = h + « at
z*, which shows that (D-3) holds. For y*, the same argument can be
employed.
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PROPOSITION 3. Condition B is satisfied after each iteration.

Proof. In Proposition 1, we have shown that any arc (z,y) € £ is
contained in one of A7, Ag, Ag at each iteration. But each arc in them
satisfies Condition B’, which is equivalent to Condition B.

PROPOSITION 4. h and ¢ are optimal at the termination.

The above Proposition 4 is a corollary of the sufficiency of Duality
Theorm and Proposition 1 through 3 since (z9,z) € A; if and only if
z € UN, and since Condition A is violated by a node z only in UN.
Up to now we have justified Dual Algorithm. Now we will show that
the algorithm is a finite one and hence that the problem always has a
solution and the problems (D) and (P) are really dual to each other.

Recall that a set of numbers is said to be commensurable if they can
all be expressed as whole multiples of a certain number A > 0. Certainly,
any finite set of rational numbers is commensurable. The commensura-
bility condition in Proposition 5 below is no harm in practice since, for
computations, numbers are always rounded off to something rational.

PROPOSITION 5. Dual Algoritm is finite if the values f(z) and w(z)
are commensurable.

Proof. From the table in the proof of Proposition 1, we know that
any arc which is not in A; remains outside A;. From that (z0,z) € A;
if and only if z € UN, it follows that the updated UN is a subset of
UN at previous iteration. Since the set X, and hence UN, is finite, it
therefore sufficient to show that once a node z* € UN is selected at Step
3 of a certain iteration, it is no longer a member of UN after a finite
number of iteration thereafter. Whit a circuit P as the outcome of PNA,
the value h(z*) is increased by « since (zq,z) € P*, and with a cut
Q =[S, N — 5], the value g(z*) is increased by B because (zo,z*) € Q™
and z* € S. But the values of f,w, h, g and F are cornmensurable at the
outset of the algorithm. They are then all multiples of a certain number
A > 0, and hence so will be the numbers o, 8, ', F' and ¢'. The
situation now is self-perpetuating, and it follows that at every iteration
either h(z*) or g(z*) is increased by at least A provided the same node
z* is selected in a row as long as it is still in UN. Therefore we can
conclude that either h(z*) = w(z*) or g(z*) = f(z*), whichever comes
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first, will occur after a finite number of iterations, which completes the
proof.

Proof of the Necessity for Duality Theorem. We have shown that

whenever the algorithm starts with feasible funtions it produces the
optimal solutions and the optimal values are the same. Together with
the fact that there always exist feasible functions, Lemma completes
the proof.
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