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We report an analysis on the stability properties of external cavity semiconductor lasers exposed
to strong feedback from an external grating. The frequency range of stable single mode oscillation
is found to depend on the offset between the resonance frequency of the solitary laser and the freque-

ncy of maximum reflection from the grating.

I. INTRODUCTION

The semiconductor lasers have been widely emplo-
yed in various areas such as opticl fiber communica-
tions'!), optical fiber sensors'?, pumping of solid state
lasers'®, high resolution spectroscopy*’. However, the
typical linewidth of semiconductor lasers is too broad
for their direct applications and many methods have
been devised to reduce the laser linewidth. Optical
feedback method has been commonly used to narrow
the laser linewidth, due to its simple construction of
experimental system. Typically, external optical feed-
back can be accomplished using plane mirror'™, grating
6] confocal resonator'”. The optical feedback from
grating and confocal resonator is of particular interest
due to its frequency selectivity and tunability. The fre-
quency tunability is quite important for some applica-
tions such as optical communication'!), atomic spectros-
copy'*.. Recently, frequency tunability over the gain
bandwidth of semiconductor laser has been demonst-
rated while the linewidth of semiconductor lasers have
been narrowed upton 4 kHz by using strong optical
feedback™®. The tuning characteristics of semiconduc-
tor laser with optical feedback from a grating reflector
has been studied by Binder et al.’® but the dynamical
stability properties have not been discussed in detail

and this paper may be considered as an extention of
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their work.

In this paper, we report the results of dynamical
stability analysis for the grating feedback system and
demonstrate that the frequency range of stable single
mode oscillation depends upon the frequency offset
between the resonance frequency of solitary laser and

the frequency of maximum reflection.
II. THEORY

The rate equation for the complex electric field E(),
which is normalized such that | E(¢) | ? is the photon
density, is given by!%1
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where w and wy’ are the optical angular frequencies
with and without feedback, respectively. AG is the fee-
dback-induced change in the temporal gain G, which
is assumed to be a linear function of the carrier den-
sity N(t): GIN)=GMN—N,), with Gy the gain slope
JG/aN and N, the transparency carrier density. a is
the linewidth enhancement factor, t in is the diode

cavity round-trip time and r, is the reflection coeffi-
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cient of the laser facet facing the external grating. The

effective reflection coefficient »,{w) for the combination

of the AR-coated facet and the grating is given by!*!

_ 1 7a(w)exp Pw))
o) = 1—ra(wexpi N w)) @

where 7.(w) is the reflection coefficient of the grating.
@&(w)= wr is the round-trip phase shift in the external
cavity length L. (t=L./c, c: velocity of light in va-
cuum). When the product rz. is small compared to

1, Eqn. (2) can be approximated to be

rew)=r— (1—rdr.(wexpi Pw) — (1—r)

ror2(@)exp(2i P(w)) (3)

As in [8], we assume 7.(w) to be a Gaussian func-
tion

ra(@)=7c expl{— (n2)w— wcl/(Awc)} @

where g is the frequency of maximum reflection (am-
plitude 7;) from the grating and Aw the full width
at half-maximum (FWHM) of the spectral amplitude
response of the grating.

The rate equation for the carrier density N() is wri-

tten as
dN(t N
4 =]- © ~GWN) | E@) | 5)
dt T

where J is the carrier injection rate per unit volume
and 7, is the carrier lifetime.

The frequency of the longitudinal modes of the com-
pound-cavity laser are the solutions to the phase con-
dition for the semiconductor cavity with the two facet

reflection coefficient 7, and 7 {w)'¥
O, &)+ plw)=2m (6)

where ¢(w) is the phase of the complex effective refle-
ction coefficient 7,,w) and m is an integer. The phase
shift within the laser cavity ¢.(w) can be expressed
in terms of detuning of w from the M-th longitudinal
mode of the semiconductor cavity wum(g) by

O, 8)={(w— ()T .

where g is the gain. If wy’ is the longitudinal mode

of the solitary laser with gain profile g°, wum(g) is given
by

op(@) = o’ + 0.5av, 4, 8)

where v, is the group velocity inside the active medium
and Ag=g—g°= AG/v,. From Eqn.. (6)-(8), the follo-

wing phase condition can be obtained:(®

w—wy’={aLnAg— ()} T C)]

where L, is the cavity length of diode laser (L,,=v,%.).
The loss a(w) of the compound cavity mode can be
found from the unity gain condition over one round

trip;
alw)=—(1/Li) In(r | rlw) 1) (10)

where 7, is the reflection coefficient of the uncoated
laser facet. The condition for the oscillation of the soli-
tary laser is g°= @, where @ is the loss of the soli-
tary laser calculated from (10) by replacing | r{w) |
with 7,. Eqns. (9) and (10) can also be obtained from
the steady state solution of Eqn. (1).

The dynamical stability of the external feedback sys-
tem can be determined by linearizing the rate equa-
tions about the steady-state solutions. Then the system
determinant D(z) can be found from the Laplace trans-

formed rate equations to be!*

D@)=G+ V)l e— &t nf)* + (& + nf)]
+wlz + nfi— &+ ol &+ nf)] 1n

with
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where Ey and Ny are the respective steady-state volues
of the electric-field amplitude and the carrier density,
¢ and n are the real and imaginary parts of the steady-

state value of 7./ry respectively.
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III. RESULTS AND DISCUSSIONS

We assume the FWHM of the spectral response of
the grating to be Aw,=27X30 GHz and used the follo-
wing external feedback parameters: L.=3 cm(r=0.1
ns), 1n*=32%. To study the dynamical stability of the
system, the secular equation D(z)=0 is solved numeri-
cally under various conditions using the following laser
parameters: Gy=1.1X10 "2 m%ec ', N,=1.1X10% m %,
=2ns, ,=2ps, t,=8ns, and a=3. The stability of
the system is determined by checking whether the root
of secular equation has positive real part (unstable)
or all of roots have negative real parts (stable). The
imaginary part of the root of secular equation gives
the characteristic oscillation frequency.

From the intersections of constant phase curve and
loss curve at fixed value of w¢, we can find compound
cavity modes @ to determine feedback phase wr in
f. and £ used in Eq. (11). Fig. 1(a)-(c) show the compu-
ted loss and constant phase curves at the various ref-
lectivities of laser facet and the various frequency de-
tuning of maximum reflection of the external grating
semiconductor laser. The stable compound cavity mo-
des are marked with filled circles while the unstable
modes are indicated with open circles. If the reflecti-
vity of laser facet is low, there can be many stable
compound cavity modes which can oscillate together.
However, the number of stable modes reduces to one
or two with increasing facet reflectivity.

Changing the external cavity length on the order
of wavelength results in the shift of the oscillation fre-
quency. The effect of cavity length detuning can be
analyzed by changing the feedback phase wr to wr+§
in Eqns. (2) and (3) and by finding the compound ca-
vity ‘'modes. Change of the feedback phase results in
the shift of loss curve and constant phase curve simul-
taneously. Fig. 2(a)-(c) show the locus of the compound
cavity modes and their chirp reduction factor F(=dan,’
/dw) obtained at various detuning. The same parame-
ters as in Fig. 1 are used in Fig. 2. The chirp reduction
factor is calculated using the formular in Ref. [8] and
relatively low value of it (0-30) has been obtained. The
stable modes are shown with closed circles while the

unstable modes are shown with open circles. By exa-
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Fig. 1. Computed loss (solid line) and constant phase
(dotted lines) curves for an external grating la-
ser with #,=13% and (a) »,*=0.05%, Af;= —80
GHz, (b) n*=2%, Afc=—60GHz, (c) ./=32%,
Afc=—20 GHz. The stable and unstable modes
are indicated with closed circles and open circ-
les, respectively.
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2. The locus of compound cavity modes and chirp
reduction factor at the same conditions of Fig.
1, respectively. The stable modes and unstable
modes are shown which closed circles and open
circles, respectively. The unstable modes due
to the undamping of relaxation oscillation are
marked with open squares.
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Fig. 3. The locus of compound cavity modes and chirp
reduction factor with laser facet reflectivity 7,?
=3%, r,,=10%, t=04ns and (a) Afc=-—60
GHz, (b) Afs= —20 GHz. The same convention
as in Fig. 2 is used to indicate the stability
of a mode.

mining the imaginary part of the root of the secular
equation, we also found that the mode can be unstable
due to the existence of nearby stable modes or due
to undamping of relaxation oscillations. The unstable
modes belonging to the latter case is marked by open
squares in Fig. 2(b) and (c). They have a characteristic
frequency corresponding to the relaxation oscillation
frequency.

Fig. 3(a) and (b) show the locus of compound cavity
modes at relatively long external cavity lengths. The
mode with lowest threshold gain is stable with proper
frequency offset as shown in Fig. 3(a), while if is uns-
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table with imporper frequency offset as can be seen
in Fig. 3(b). It may be noticed that the stable operation
range depends on freqency offset as well as on the
external feedback parameters. The attainable maximum
chirp reduction factor also depends on the frequency
offset and the range of that factor is limited by the
stability of the mode. The external optical feedback
from a grating has some limitation as shwon above
due to relatively broad frequency response of the gra-
ting. Even though the number of modes is greatly re-
duced with grating feedback compared to that with
plane mirror, additional narrow range frequency selec-
tive optical element may be necessary to have a single

compound cavity mode oscillation.

IV. CONCLUSIONS

We have analyzed the dynamic stability of semicon-
ductor lasers with strong optical feedback from a gra-
ting and found that the dynamically stable frequency
range of single mode oscillation depends on the fre-
quency offset between the frequency of solitary laser
and the frequency of maximum reflection. we have
determined the stable operation range at various laser
facet reflectivity and frequency detuning. It is observed
that the attainable chirp reduction factor depends on
the frequency offset. We also observed that the unsta-
bility of some modes can be caused by the existence
of nearby stable modes or undamping of relaxation
oscillations. It may be concluded that dynamic stability
analysis is necessary to estimate the performance of
extenal cavity semiconductor lasers.
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