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Optical Neuro-Computing

Eung Gi Paek
Bellcore 331 Newman Spring Road Red Bank, New Jersey 07701

(Received: September 15, 1991)

In this paper, we riview a new type of optical computing-optical neuro-computing-which was inspired
to emulate the computational capability of the human brain. Also, recent activities at Bellcore for
the implementation of optical neuro-computers are described.

I. INTRODUCTION

The recent increased activity in implementing neural
network ' is mainly due to the potential of neural
computers to mimic the computational ability of hu-
mans. Optics, especially coherent optics, is promising
in implementing neural newwork models especially for
2D images because the operation is fully parallel along
both x and y directions, and analog. Moreover, optics
provides a large number of available neurons, typically
a million. Many neurons in one layer can be connected
into those in another layer through free space along
the third dimension, eliminating the need for physical
point-to-point connections. Finally, the wave nature of
optics gives certain powerful computations, such as
Fourier transform, convolution, correlation and so on,
which are crucial in neural network implementations.
Many systems utilizing the advantages of optics have
been demonstrated. %’

However, the systems based on coherent optics re-
quire bulky optics and critical alignments, making the
systems impractical. In this paper, we will focus on
this issue of compacterization of coherent optical
neuro-computers by taking two typical holographic
neuro-processors, a holographic word-break recognizer

and an on-line learning machine, as examples.

1II. HOLOGRAPHIC ASSOCIATIVE MEMORY
FOR WORD-BREAK RECOGNITION
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As a first example of optical neuro-processors, we
describe a special type of associative memory for
“word-break” problem.!""! The problem can be illustra-

ted in the following sentence:

Text Reeding Without Word Brecks May Became
Difficult

Without spaces between words, it is difficult to deci-
pher the text. The task becomes even more difficult
if the words each of which is embeded in a continuous
stream of other letters, correct errors in the words,
and insert spaces between them. The system must be
shift invariant so that an input word can be recognized
in any position. Since many words appear at the input
window simutaneously, the system should also be able
to process multiple inputs without crosstalk. Moreover,
the system should be able to insert word-breaks at
suitable positions between words.

By modifying a Hopfield-style holographic associative
menory' " to include the various features described
above, a holographic word-break recognizer has been
demonstrated.'”! As shown in Fig. 1, memory words
are stored in a conventional Fourier transform holog-
ram. The recognition part of the system consists mai-
nly of a holographic VanderLugt correlator.’ For
word-break recognition, the input word stream is pre-
sented at the input plane of the system. Autocorrela-
tion peaks that appear at places where there is a match

between the input and memory are detected and the
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Fig. 1. Schematic diagram of the holographic word-
break recognition system.

separation between the peaks magnified along the
word direction. This stretched correlation output is re-
flected back to illuminate the hologram and reconstruct
the whole memory at the output plane. The output
through a window which is situated at the origin of
the output plane is the desirable readable text. Fig. 2
shows the experimental results. The four words used
as the memories in this experiment are shown in Fig. 2
(a). The concatenated input with errors is shown in
(b). The correlation output is shown in (c¢). The sharp
autocorrelation peaks appear at the corresponding po-
sitions of the input words and memories. Also, sidelo-
bes appear over the whole correlation plane. Fig. 2(d)
shows the thresholded and anamorphically magnified
version of the correlation output. The final output from
the system is shown in Fig. 2(e). Compared with the
initial input in (b), spaces are inserted between words

and all the errors in the input are corrected.

. HOLOGRAPHIC LEARNING MACHINE
FOR MULTICATEGORY CLASSIFICATION

As a second example of optical neuro-processors,
we describe a holographic on-line learning machine
that can be trained to read characters the same way
as a child does.”"" Fig. 3 shows a diagram of the expe-
rimental optical learning machine for multicategory
classification. Each of the input training patterns, sto-
red on a OMDR (optical memory disc recorder) is
loaded onto a two-dimensional spatial light modulator
(Hughes liquid crystal light valve) using a monitor
and the lens, L;. The loaded image is read out by

a collimated coherent beam from an Argon laser and
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Fig. 2. (a) The four patterns stored in the holographic
memory; {b) The input to be read; (c) corre-
lation output; (d) the thresholded version of
the correlation output which is anamorphically
magnified along the x (word) direction; and
(e) the associative recalled output with spaces
between words and error corrections.
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Fig. 3. Schematic of the holographic learning machine
for multicategory classification.

is focused onto a photorefractive crystal (0.01% iron-
doped LiNbQ.) using the lens, L,. The light diffracted
from the photorefractive crystal is collected and focu-
sed onto a detector array. The detector array, which
is located at the image plane of the LCM (liquid crystal

modulator) array, consists of 20 detector elements to
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represent the bipolar (+ and —) values for ten out-
puts. The outputs from each pair of detectors are subt-
racted, thresholded and latched. The error signals are
generated by comparing the output with the desired
target signals. The error signals thus obtained are loa-
ded to an array of 20 LCM'’s to represent 10 bipolar
error values. We fabricated a twisted nematic liquid
crystal array specifically for this experiment. The light
from the LCM array is focused to the photorefractive
crystal and interferes with the input to reconfigure
the information recorded on the crystal. The intercon-
nection strengths recorded on the hologram can be
read out by the light from each element of the LCM
and can be externally stored and reloaded at a later
time.

Fig. 4 shows a typical experimental learning curve
(number of errors vs. iteration) obtained from the sys-
tems for 24 training patterns as shown in Fig. 4(a).
The number of errors is summed for all the output
neurons {both positive and negative neurons) and for
all memories. Therefore, the number of maximum pos-
sible errors is M2, where M represents the number
of images in the training set. Initial conditions of the
interconnetion strengths are arbitrarily determined to
small random numbers mostly due to background
noise, scattering from the crystal, and the non-unifor-
mity of the detector array. Characters of three different
sizes and orientation are trained to be classified into

one of eight output states. As shown in Fig. 4(b), the
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Fig. 4. (a) 24 training patterns and (b) experimental
learning curves.

system successfully converged to the no error state
after 55 iterations, even though the training sets are

far from being orthogonal.

IV. A COMPACT HOLOGRAPHIC ON-LINE
LEARNING MACHINE

The holographic on-line learning machine described
above is very attractive and promising because the ad-
vantages of optics can be fully utilized. However, the
system requires bulky optical components and critical
alignment. Therefore, it is difficult to cascade the sys-
tem to implement a multilayer network. It should be
noted that the shift property of the optical Fourier sys-
tem was not utilized in the present system shown in
Fig. 3. Since a volume hologram is used, one cannot
expect shift invariant recognition because of the phase
matching selection of volume holograms. This relaxes
the system requirements significantly. The only coni-
tions the system has to satisfy are: Both input and
error signals have to interact globally inside the photo-
refractive crystal, and the LCM array has to be imaged
on the detector array. The reason we had to use many
optical components in our system to focus light in the
medium was because of the low sensitivity of the pho-
torefractive crystal. If the sensitivity of the photorefra-
ctive crystal is high enough, the system can be signifi-
cantly simplified as in Fig. 5.1 Input and error spatial
light modulators are directly attached on the photoref-
ractive crystal. To ensure global interaction between

the input and error inside the photorefractive crystal,
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Fig. 5. A compact holographic on-line learning ma-
chine.
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a diffuser is inserted between the spatial light modula-
tor and the photorefractive crystal. An unpolished sur-
face of the crystal can work as a diffuser also. At the
other end of the crystal, a lens and a detector array
are attached. Instead of cementing a lens on the photo-
refractive crystal, the refractive index of the crystal
can be changed by ion implantation, modifying the op-
tical power. In this way, a compact and robust hologra-
phic learning machine that does not require any align-
ment can be implemented. If ideal nonlinear optical
devices are available in the future, even the feedback
loop can also possibly be achieved optically.

V. COMPACT HOLOGRAPHIC
ASSOCIATIVEL MEMORY USING A
SURFACE-EMITTING MICRO-LASERARRAY

Now, we will demonstrate another example of com-
pacterization of optical neuro-processors by taking the
associative memory for word-break problem as an exa-
mple. Recently, low-threshold electrically pumped ver-
tical-cavity surface-emitting microlaser diode arrays
(SELDA’s) have been reported.*'?) The SELDA's
have many features the make them highly desirable
for use in holographic memory systems. The individual
lasers can be as small as a few microns, allowing over
one million microlasers on a 1cm?® chip. The wavele-
ngth of the light from the laser is 960 nm with the
linewidth of around 0.1nm. This gives a coherence
lenghth of several cm and a spectral resolution of
about 10,000. Therfore a hologram of a high resolution
image can be recorded and reconstructed by using an
SEL. The threshold current of the laser is low, around
1 mA for lasers less than 5 um in diameter, keeping
device power requirements down. The output optical
power from these lasers can be more than 100 mW
depending on size. Therefore the light from each laser
is bright enough to reconstruct a hologram which can
be detected by a normal 2D image sensor. The lasers
exhibit high switching speeds (less than 1 nanose-
cond) allowing fast optical access and proving very
high contrast since an OFF laser generates no light.
So, the question is how to utilize the novel device for

optical neuro-processing. In the following we will de-
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monstrate how the associative memory described
above can be made compact using the SELDA. We
note that the associative memory consists of two parts:
he first part is a pattern recognizer to compare an
input with the memories stored in a holographic me-
mory and the second part is the reconstruction part
to retrieve the corresponding memory on the output
plane.

1. A Compact and Ultra-Fast Holographic Me-
mory

We describe a compact and ultra-fast holographic
read-only memory that eliminates the need for a bulky
laser, SLM’s or beam steering optics by using the SE-
LDA. As explicitly shown in Fig. 6, a SELDA combined
with a simple collimating lens works as a very efficient
multiple beam steerer to change the beam direction
to reconstruct holographic memories. By using this si-
mple and compact optical setup, any frame can be ran-
domly accessed in less than 1 nanosecond (without
considering detection time).

In the experimental results shown in Fig. 7, memo-
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Fig. 6. Multiple beam steering using surface-emitting
micro-laser arrays.
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Fig. 7. A compact and ultra-fast volume holographic
memory using a SELDA.
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ries are recorded in a volume hologram (LiNbOj; crys-
tal, 0.01% Fe doped LiNbQ,, 20X 20X 7 mm?®, Deltronic
Co.) which can provide a large storage capacity up
to 10" (theoretically 10") using the third dimension
available in a volume storage medium.*****) Fig. 7 shows
the reconstructed images from the volume hologram
by using the light from a SELDA. Each laser is separa-
ted from the adjacent one by 70 ym, corresponding
to an angular separation of about 0.04 degress which
corresponds to (.02 degress for the recording wavele-
ngth. As can be seen in the Figure, the two indepen-
dent lasers separated by about 0.04 degress reconst-
ruct totally different images. In this way, each microla-
ser can be matched to a separate page, allowing the

array to form a selective address generator.

2. A Compact and Robust Holographic Correlator

Next, we will show that the recognition part of the
associative memory shown in Fig. 1 can also be compa-
cterized using the SELDA. As mentioned previously,
spectral linewidth of the light from a surface-emitting
laser (SEL) is very narrow, allowing extremely high
temporal coherence. However, the phase of the light
from each of the SEL is not locked with each other
Le., the lasers are spatially incoherent. These two uni-
que coherence properties (temporally highly coherent
and spatially incoherent) make a SELDA and ideal li-
ght source in implementing a compact and robust inco-
herent correlator.!*”!

Fig. 8 shows an incoherent correlator using a SE-

H
SELDA ologram

Correlation
Output

Fig. 8. A compact and robust 2D correlator using a
SELDA.

LDA. The light from each of the SELDA is collimated
by the lens, L, and illuminates the hologram to recons-
truct holographic images on the output plane which
is located at the focal plane of the lens, L,. The image
generated by each SEL is shifted by the amount corre-
sponaing to the position of the SEL. The reconstructed
images gemerated by the light from different SEL’s
are added up incoherently because each laser operates
independently, averaging out the phase-sensitive inter-
ference terms. The eventual summation of all the reco-

nstructed images generated by all the SEL’s in the
input plane gives the correlation between the input
and the reference image stored on the hologram.

In such an incoherent correlator, the hologram need
not be separated from the adjacent two lenses, L, and
L, by the focal lengths and even can be in contact,
reducing the physical of the system. Since the system
does not involve any moving parts (e.g., rotating diffu-
ser) or bulky optical components, the whole system
can be miniaturized and integrated using semiconduc-
tor technologies.

Fig. 9 shows the correlation output obtained from
the SELDA correlator. A holograhic filter was fabrica-
ted for the input pattern, Bell logo, and was tested
for the two input patterns, Bell and Chinese character
meaning ‘light’. These two input patterns are shown
at the top of the Figure. Figures at the bottom show
the correlation outputs for the corresponding inputs
shown at the top. For the correct input, Bell, a bright
autocorrelation peak appears at the center of the cor-
relation output (bottom left). For the incorrect input,

Chinese character, a crosscorrelation is obtained (bot-

Fig. 9. Correlation outputs from the SELDA correlator.

Inputs (top) and correlation outputs (bottom)
for the holographic filter for a Bell logo.

Input

Output
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Fig. 10. Filter positioning tolerances of a VanderLugt
correlator (left) and the SELDA correlator
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Fig. 11. Compact and robust holographic associative
memory.

tom right). As shown in the Figure, the crosscorrela-
tion signal is much weaker than the autocorrelation
peak, allowing a satisfactory discrimination between the
two input patterns.

Fig. 10 compares the filter positioning tolerance of
the SELDA correlator with that of a vanderLugt corre-
lator. In case of a VanderLugt correlator, a sharp auto-
correlation peak is obtained as shown in the Figure
(top left). However, after disturbing the filter by only
50 um, the recognition peak is completely lost. On the
other hand, in case of the SELDA correlator, the cor-
relation output is not noticeably affected even for the
shift of the filter by 7 mm, demonstrating the robust-

ness of the system.

3. A Compact and Robust Holographic Neuro-Proce-
ssor

The correlator demonstrated above can be easily co-
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mbined with the holographic memory system described
in 1. usng the same optical setup based on a two lens
system. In the proposed system shown in Fig. 11, the
light propagating from left to right calculates the corre-
lations between the input and the memories stored
on the hologram. The correlation outputs are threshol-
ded by an array of optical nonlinear elements (optical
neurons) and is reflected back to illuminate the holog-
ram and retrieve the corresponding memory on the
output plane. Due to the compactness and integrability
of the system, it can be cascaded to implement even
more complicated multilayer networks''”’ using semi-

conductor technology.

V1. CONCULSION

In conclusion, we have shown that coherent optics
is powerful in implementing various neural network
models for two dimensional images. By using the rece-
ntly dev:loped surface emitting micro-laser diode ar-
ray, the coherent optical systems can be made compact
and robust, still preserving the power of coherent op-

tics.
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