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Antagonistic Stiffness Characteristics in Robotic
Linkage Systems
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Abstract

This work investigates the antagonistic stiffness properties inherent in the coordination of general robotic systems
such as in maintenance of static equilibrium (c.g., given posture) of nonlinearly constrained mechanisms through red-
undant actuation, Such antagonistic situations occur in normal operational modes of many robotic systems ncluding
coordinations of multiple manipulators, multi-fingered end-effectors. and walking machines, as well as in the human
body. Stiffness due to antagonism is shown to be a good means of characterizing properties of these sort of systems.
The concept of antagonistic stiffness is distinguished from that of structural stiffness intrinsic in deformabic(ie., non-
-rigid) body systems because here no deformations of bodies are mvolved in the stiffness generation but only relative
rigid body displacements. This stiffness, therefore, may be mterpreted as the system’s cffoctive stiffness duce to 1put
redundancy, and can be utilized as a measure of open-loop stabilty for generally equilibrated robotic mechanisms, as
well as for generation of an active{and therefore controllable) nonlincar spring by preloading the system. In this paper,
conditions for full, active stiffness generation and open-loop stability of several models with antagonism are investig-

ated from both analytic and purely geometric points of veiw.
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I. Introduction

In the coordination of general dynamic systems,
we can observe many dynamic systems that sus-
tain statically equilibrated, and internally or exte-
rnally constrained, states. In these states, the
system becomes a single overconstrained mechan-
ism. This results in an antagonistic situation, which
generates a local effective systemn stiffness. The
effective stiffness is important in that it is a
generic system property in tasks where forces and
motions are imparted to an object, and it is prim-
arily a geometric property of the system as a
whole,

Thete are a limited number of works that deal
with antagonism, One of the early current inves-
tigation was maded by Hogan [1982]. He modeled
equilibrated axes consisting of several passive
springs and discussed the concept of open-loop
disturbance rejection and nonlinear spring design,
Tong and Somerset [1935]) suggested a simple
active control of single axis using two antagonistic
actuations. Jacobson illustrated push and pull type
antagonistic fingers, Benedict and Tesar [1973]
implicitly addressed the antagonistic property
generated from preloaded external springs. Cutkosky
and Wright [1985] designed an active wrist, which
has a parallel mechanism structure composed of
four bars and utilizes the idea of antagonistic
preloading. Note that this, so called. “antagonistic
stiffness”, plays an important role when estimating
a system’s open-loop stability. In addtion, an active
nonlinear spring will be created by antagonistically
preloading a mechanism with redundant actuation,

Hanafusa and Asada [1981] studied system

stiffness and stability of a three-fingered robot

hand in two dimensions in which a potential fun-
ction for describing a stable grasp is denived. In
this early analysis, they assume that the fingers
are made of linear springs with a single degree
of freedom, and friction is ignored. Fearing [193
t] proposed a method for stable planar grasping
of two dimensional polygons. Jameson and Leifer
[ 1986 ] also studied the stability of a frictional point
model and stability of a soft-finger contact model.
Nakamura, et. al. [1988] defined object stability
and contact stability for the dynamic coordination
of a multi-fingered system, Tehy defined object
stability as the ability of a system to return to
the nominal position against positional errors, and
contact stability as the ability of a system to
maintain contact without slip in the presence of
external disturbing forces, Most previous stability
analyses concerning grasping have concentrated
on object or contact stability. However, the stability
factor due to finger configuration has not been
widely considered. Also, note that the antagonistic
stiffness due to manipulator (finger) configuration
has been omitted in the derivation of the effective
robot task space stiffness of statically equilibrated
systems, such as in force control |West and Asada,
1985] and in grasping analysis [ Kao and Cutkosky,
1989]. In this paper the antagonisitic(open-loop)
stiffness property that is inherent in any statically,
dynamcally, or internally constrained robotic
mechanism is taken inte account,

Nguyen [1987] addresses force closure in thre-
e-dimensional objects grasped by virtual springs
corresponding to force components transmitted at
the finger tips. He proposed a least square solution
for specifving the stiffness of the virtual springs

to obtain a desired grasp stffness. However, the
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finger geometry and the static load relationship
between the virtual springs and the finger joints
are not considered. Kao and Cutkosky [1989]
express the compliance of a grasp as a function
of grasp geometry, contact conditions{including
general friction conditions) between the fingers
and the grasped object, and the mechanical prop-
erties of the fingers. They also study the reverse
problem of determining servo gains at the ypints
.of a robotic hand required to achieve a desired
overall compliance, In this paper, the concept of
active nonlinear spring generation by preloading
the system will be addressed from a geometric
point of view. Design of active RCC devices was
proposed as a prospective application of active
nonlinear spring generation [Yi, et. al, 1989].

The purpose of this work is the theoretical
investigation of antagonism and its application to
physical systems. This understanding should allow
for the enhancement of operational performance
in internally or externally constrained linkage
systems. The organization of this paper is as fol-
lows, Initially, we illustrate basic kinematic mode-
ling approches for open-chain and closed-chain
systems, Next, the generation of an active nonli-
near spring and conditions for full stiffness are
addressed in terms of the nonlinear nature of the
kinematic constraints in closed-chain mechanisms,
Next, severa) simple mechanisms with antagoinism
are iliustrated, with emphasis on the relationship
between the manipulator configuration and the
internal loading mode, One bar and four bar
mechanisms under antagonistic internal loading are
shown to illustrate the basic stability concept from
a purely geometric point of view., The concept is
based on actively generated local stiffness and is
applied further to stability analysis of dual arms
and multi-fingered hands, Finally, conclusions and

suggestions for future work are given.

II. Kinematic Formulation

2.1 Open-Chain Kinematics

Here, only the general methodology and result
format of the higher-order kinematics is given.
The problem of position analysis is not addressable
{except in an iterative, or differential displacement
sense) by the given procedure. Adopting the sta-
ndard Jacobian [G ’u] representation for the velo-
city of a vector of P dependent (output) param-
eters U in terms of a set of M independent input

coordinates ¢, one has

. u. .

n=[G’]0. (2-1)
Here

2. . én do Ju
[G=l =" - ——
s 092 oM

=[2]8; 8] (2-2)

15 the Jacobian relating the coordinates u and ¢,
with the n ® column g} being of dimension Px1
. Having stated the first-order kinematics in a
fairly common form, the second-order kinematics
are presented in a less common from, Here, a
particular matrix formulation is chosen in which
the non-linear, velocity related components are
expressed in terms of a three-dimensional coeffi-
cient array [Hy), (consisting of position depen-
dent second-order partial derivatives) operated on
quadratically in a~plane by plane” sense, Generally,
the acceleration vector u of a set of P dependent
parameters u is represented in terms of the M

independent coordinates ¢ as

se v, .. T . 0._ .
o= [G’] L [H”I ¢ (2-3)
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where the second-order influence coet..cient array
[H‘; ‘], with the dimension of PxMxM, is defined

as

( \
.T 1.0 ;
b [Hyyl ¢

T 240
: [ OHy ¢
(1Gy) 4 =47 Hyl ¢ "

-T P.u ;
¢ [Hyl ¢

J (2-4)
where the i plane of [H, o1 18

P
o¢ d¢

Cu .
[l H”] = MxM matrix.

In most kinematic papers, [G‘;J has been used
instead of ¢T[H: ‘], but the second order purely
geometric property [H: ‘}
etric interpretation is needed such as in the dete-

is useful when geom-

rmination of existence, and conditions for, degen-
erate singularity [Burdick, 1988], and in the def-
inition of antagonistic stiffness herein.

The inverse kinematics problem determining the
relative joint velocities # and acceleration ¢ 13
obtained by an isomotphic transformation. Provided
the mechanism Is not singular and P is equal to

M (square Jacobian), the joint speeds are

+-6he (2-5)

where

(2-6)

.

0 0 ool
Gyl = 3 = [Gy]

SREEERNIE 10 & 6 W(1991)

The ypint accelerations are
. . -.T .
s=16N5+0T ) 0 (2-7)

Where using the generalized scalar (tensor) product
{0) (see Appendix'}

2
"y
L U u. 4] v
Hyyl = —5 =~ [OITG ) o H, D G

(2-8)

The transfer methodology (Eq.(2-6) and Eq.
(2-8)) will be used later when dealing with ant-

agonism from external force(Section 3,2).

2.2 Closed-Chain Kinematics

The methodology is illustrated here in terms of
R, M-DOF arms manipulating a common object in
an N-dimensional space. Assuming the Jacobians
[.-G‘;] relating the common object motion param-
eters (u) to the relative jint parameters {(, ¢, r=
1, 2,--+, R) of the R manipulators are non-singular,
the first step is to determine the total system
model in terms of the common object (pseudo)
coordinate set {u). To accomplish this, obtain the
pint space model (S ‘) of each manipulator,
using the forward kinematics (and kinetic equat-
ions), as if it were isolated (independent) from

the rest of the arms.

(59 =[Ol [Hy - (2-9)

The transferance of each chain (Eq.(2-6) and
Eq.(2-8)) is not employed here since in the general
case, where P 1s not equal to M, the use of the
Jacobian inverse (pseudo-inverse) does not yield
the generic solution of the system. However, the
open chain model(s) (Eq.(2-9}) will be utilized

to formulate the forward kinematics in closed-chain



Antagonisttc Stiffness Characteristics in Robotic Linkage Systems 27

mechanisms (Eq.(2-19)),

Based on the pervious open-chain kinematics,
the following discusses the closed-chain kinematics
of general parallel mechanisms. Assuming that the
end-effector of each arm ngidly grasps the object,
the system can be viewed as a multi-loop parallel
mechanism. There are numerous distinct operational
subcases of this general situation depending, for
instance, on whether M=N, M>N, or M< N, Here,
a system is assumed to have general closed kine-
matic chains. The number (W) of independent

loops is represented by the following formula
We=l-L+1 {(2-10)

Where ] and L. denote mumber of joints and links,
respectively. The number(C) of holonomic const -

raint equations is
C=WxQ (2-11)

where Q is 3 and & for planar and spatial
mechanisms, respectively,

The holonomic constraint equations will be
expressed in terms of system Lagrangian coordi-
nates, or sets of independent{ ¢,) and dependent

( # o) coordinates, as follows,

10 =1(4,. 9, = 0. (2-12)
The first order kinematic influence coefficients

(KIC), which relate the dependent coordinates to

the independent coordinates, can be obtained by
total differentiation of Eq.(2-12)

(Gl14, + 1G] 4,=0 (2-13)

where

NS HEANES

a p

1GE] is a CxNg matrix whose it* row and j* col-
urmin element is af,/ 2¢s and [Gf]is a CxN,
matrix with f, /344 as its ™ row and j* column
element, Here, Ny and Np are the number of ind-
ependent and dependent coordinates, respectively,

Proceeding further by solving Eq.(2-13) for fo,
by =- 165" 164 ¢
P p] al *a (2-14)

where the nonsingularity of matrix [Gf] is assum-
ed. Now we define the first order KIC matrix of

a closed loop system as
-1
651 = - 165y (6)) (2-15)

where p and a imply ¢, and 4, respectively,
Using this definition, Eq.{(2-14) can be written

as
4= (O3] 4, (2-16)

which relates the system’s independent joints to
the dependent pints, Since the yints (r#) of the
t* chain are composed of some of the mdependent
and dependent joints, ¥ can be expressed in
terms of the total system’s active joints by deco-

mposing Eq, (2-16) as follows
¢ - ctle, (2-17)

where an augmented matrix [*G¢] is formed
according to the order of independent and depen-
dent joints in the r** chain. Now, the forward
kinematics for the common object space is obtained
from any of the open-chain (r** chain) kinematic

relations as follows
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B [yl ¥ =[Gyl ¥, (2-18)
where

u U
[G,] = ;G [fG: ]. (2-19)

Evaluation of the second order influence matrices
[HEy] is also straightforward. If we differentiate
Eq. {2-13) with respect to time again, the follo-

wing equation 1s obtained
£, T oof o - T .
AT DR AT

s Tl 12 .. . .
" Fgglp (G by 4 THE 14,0
‘ (2-20)

where, the bilinear operators introduced in Eq.(
2-20) are defined as follows

A%

[H i = o Jkij = S
09,09, 2403

a%t

pa 0¢p09a i’
HE 3= & . _ &
aP]li a,aa’p }kll daldpj
ot o1,

f L, w® P
(ool ’a¢pa¢p b 9pi0p;

Now, the acceleration of the dependent parameters
is expressed as

. - . - T p .
"% (GR19,* ¢, ME,)4, (2-21)
where

a2’ oy,

a4’ra

R TR 10 % 6 %(1991)

== (G5 o ¢ H ) + HL)* + (HLI*")
(2-22)

with

HE 1= (GRITIH ) (GE) (2-23)
Ml ge= (ORI L) + M IGED. 22

Here, the second order of geometric properties
[Hia] and [Hip] are symmetric in helonomic
systemns, [Hia)" is still symmetric after the plane
by plane congruence transformation between[G§]
and each plane of [Hbp]. [Hig)* is also symmetric
since [GE]T [Hba] is the transpose of [Hip] [GE].
Therefore, the left hand-side is symmetric.

That 1s, each plane of [HBa] is a symmetric
matrix. This is consistent with the fact that [H”
] 15 the generalization of the Hessian matrix
defined for a single function of several variables
(see Cho, et. al, for detailed derivation of these
KIC). By the same augmentation method implied
by Eq.(2-17), the second order forward kinemat ics
can be easily obtained.

Now, an alternate expression of Eq.(2-22) is

[Hpga) = = (GL1 ezl + (Hygyl® + Heps)™)

(2-23)
- P
[1h3a 2ire, 3hthy o5, sbD, o2
{2-26)
with
ot f
[Heaal = 1 gy ohpy ahpy ghyy shoy ghygl
(2-27)

el = (05" Ghh)” Gho)” gy’

f o= f =
(shyn) (ghay) ) (2-28)
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(Hpggl® = {Gh5™" o™ (o)™ ()™

(shfm)" Q,hia)“l (2-29)

where the matrices (Eq.(2-25)) to Eq. (2-29))
are the collections of the upper triangular elements
of the three dimensional matrices in Eq,{2-22),
respectively, For example, each column of [Hpgal
is shown graphically (Fig.]1) below in terms of
(HE 1.

Figure 1

The other matrices are formed in the same man-
ner, It is important to note that lineardependence
of the columns of [Hoea), [Haal)', and [Hrea]™.
which implies linear dependence of the planes of
the three dimensional matrices, influences the rank
of the matrix [Hpee]. The above open-chain and
closed-chain kinematics will be utilized in the

following analysis of antagonistic properties.

I The Concept of Antagonism and Its Appiic-
ation

For a system in static equilibriurn with another,
or with itself, there exists a resistive action betw-
een the systems, or within the system. This phe-
nomena is called “antagonism”, In the human body.
antagonism is defined as opposition in physiological
action or active opposition, For example, human
arms consist of 29 muscles, showing redundancy

in actuation compared to seven joint space and

six operational space freedoms. When one needs to
hold a heavy obhject, or respond to extemal distu-
rbances promptly, antagonism through the redun-
dant actuation of muscles strengthens the system,
This action, which is interpreted as a local open-
-loop control, actually increases system stiffness
and simultaneously distributes the required generaliz
ed muscle loads.

It will be shown that this phenomenon is inhe-
rent 1n general mechanisms in static equilibrium,
In the following, the antagonistic property is cha-
racterized and utilized to generate an adjustable
nonlinear spring by active preloading, and to
measure the system’s open-loop stability. System
geometry (configuration) is emphasized in the

analysis of the system’s behavior under antagonism,

3.1 Active Nonlinear Spring Generation using
Redundant Actuation of Closed-Chain Parallel

Mechanisms

Nguyen([1987] addresses the force closure (sti-
ffness generation) problem in three-dimensional
objcts grasped by virtual springs corresponding
to force components transmitted at the finger tips.
He proposed a least square solution for specifying
the stiffness of the virtual springs to obtain a
desired grasp stiffness. However, he does not illu-
strate the geometry and the static load relationship
between the virtual springs and the finger jonts.
Here, the active nonlinear spring generation of
general closed-chain mechanisms will be addressed
with regard to manipulator geometry and redundant
actuation, in a purely open-loop fashion, and the
conditions for complete stiffness generation will
be analyzed from a geometric point of view,

In general constrained parallel mechanisms with
redundant actuation, antagonism will be found.
Examples of such mechanisms are multiple man-

ipulators, multi-fingered hands, and walking mac-
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hines. For general multiple manipulators, with
possible motion redundancies in its subchains, the
oint space approach [Cho, et. al, 1989] will be
employed because of its allowance for the general
modeling of kinematically redundant closed chain
systems. The effective inertial load{Ts)at the
independent joints @, required to drive the systemn
sccording to a specified kinematic trajectory can
be distributed to all the joints, including the dep-
endent joints( ¢ ). according to

»
- T
T, =T, +(Gh) T,

-l : T2
1 163l ]Ep} (3-1)

yielding,

T -

[T;] = [G]'T, +(I- EHET (3-2)
where

e1=11 : &R (3-3)

and T,, T» imply the efforts of the independent
and dependent joints, respectively. The second term
of Eq.{3-2) represents a homogeneous solution
which generates internal force characteristics such
as stiffness, but no motion, In static equlibrium
(Ta=0), the effective loads generating stiffness

are denoted by

== T} =(1-(6}'(GD €

q
p (3-4)

where € can in general be selected to yield desired,

specified active stiffness,

0BRGP AL 10 K6 SRy
Antagonistic Stiffness Modeling for Closed-chain
Mechanisms
When any independent jpint set $,a is in static
equilibrium with the dependent jpint set o, the
effective load at the independent jints will be

ay-th . [G‘;]TTI; =0. (3-5)

where T¥ and T can be decided by selecting ¢
vector in Eq.(3-4) or, as in the following, by direct

solution of Eq.(3-5) for T¥ in terms of T.
An effective restoring force A(T¥)" is generated

against external disturbances and its behavior can

be modeled as a spring action as follows.
" T -
AT - MERT TR = -y, (5D)

Thus, local antagonistic stiffness is defined as

ary)’

a

K,
=T, o (1) (3-7)

Kyl = -

where feedback position gains and pint and link
compliances are not included in “open loop™ active
(or antagomstic) stiffness generation, The total
system stiffness will of course include these effects.

[Kaa) can be represented in a vector form as
K, - (H) 'r;: (3-8)

where vector Kg is the coliection of the indepen-
dent upper tniangular elements of {Kea] and [H}

is the transpose of [Hosa] as follows

(H] = (Hy, 1T (3-9)

The required actuation effort of the dependent

pints for the active stiffness generation will be
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+ (3-10)
T B,

where [H]* is a pseudo-inverse solution. The
system will be balanced by applying an equilibr-
ating actuation effort T¥ of the independent joints
according to Eq.(3-5).

Here, the desired operational active stiffness
[Kua] is related to joint space active stiffness
[Kaa] as follows

(Kaal ™ (Gl Kyy) [Gy)- (3-11)

where, the forward Jacobian[G¥] in mechanisms
with closed-chains is obtained by Eq.(2-19).Once a
desired operational active stiffness [Kyy] is given,
the system’s inputs will be decided according to
Egs.(3-10) and {3-5).

Now the characteristic of the second order
geometric property [HBa] will be discussed due
to the interdependence between this property and
system stiffness, In particular, some kinematic
phenomena will be addressed for geometric inter-
pretation, First of all, a closed-chain system has
W independent loops according tc the formula
(Eq. 2-10). For example, there are W=2 indepe-
ndent loops for the hnkage shown in Fig2. It is
important te note that out of the C constraint
equations, all W angle constraint equations will
be linear for planar mechanisms (such as Fig, 2
). When differentiating constraint equations twice
with respect to time, we have W degeneracies
(W zcro planes) in the second order geometric
properties, [Hea) . [Hbs), [Hf ), and [Hie), resp-
ectivelv.fin this case, [Hfea) or [H]T will have rank
(C-W), This imphes that [H]' will be an appro-
ximated Jeast square solution, From Eq.(3-10), only
(C-W) stiffness elements can be independently
generated, Thus, the number of nonlinear constraint

equations determines the degree of stiffness gen-

eration possible, Note that this relationship does
not hold for general spatial mechanisms since the
angle constraints are non-linear and configuration
dependent.

As an example, a planar shoulder (Fig.2) has
six constraint equations with two of them being
linear. Thus, only four of the six columns of the
6 by 6 [H] matrix in Eq.{(3-8) will be linearly
independent. In other words, only four stiffness
elements can be independently created through
full actuation of all nine pints. However, by adding
one more leg (Fig. 3) which results in two more
nonlinear constraint equations, full stiffness gene-
ration (6 independent elements) will be possible
because in this case the system has six indepen-
dent columns out of the mine columns in the 6

by 9[H] matrix.

Figure 2

Figure 3
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Here only 9 actuations are required for the full
stiffness generation because in this case the resu-
lting & by 6 (H] matrix is full rank due to the
& nonlinear constraint equations. This implies that
6 dependen® inputs along with the three independent
inputs can be used for full stiffness generation,
Conclusively, the minimum required actuation
number of a closed-chain system for full stiffness
generation i the number of independent inputs
plus the number of independent stiffness elements
(which is the same as the number of the activa-
ted, dependent inputs). Naturally the number of
nonlinear constraint equations must not be less than
the number of independent stiffness elements.

Again, it is important to note that spatial mec-
hanisms don't have this difficulty (linearity) since
all constraint equations are completely nonlinear
in nature. As an example, a spherical shoulder
module [Cox and Tesar, 1989] (Fig.4), which has
just three operational rotational motions, can create
full stiffnes (six independent rotational stiffness
elements) through six nonlinear angular constraint

equations and nine jint actuations,

Figure 4

Additionally, there exist geometrically singular
configurations which effect the ability to mamntamn
full stiffness generation. Consider when a system

happens to be in a locking position (Fig, 5). (i

SRR M WA rLL 10 B 6 RO196])
e. when the three partial instantaneous screws
are coincident ),

The systetn loses the ability to resist a moment,
and hence, the ability to generate rotational stiff-
ness, in operational space.

Here, our initial investigation is made for the
relationship hetween these singurahties and the
degeneration of the stiffness map [H]. The alte-

rnate form of Eq.(3-11) is
Ka-IG] l(.u. (3-12)

where K, is the collection of the independent upper
triangular elements of [Kuu]. and the elerments
of the 6x6 [G] matrix are quadratic functions of
the {G§] elements. Now, we have the following

equality from Eq.(3-4) and Eq.(3-12)

61Ky = 1 T, (13

where row dimensions of [G] and [H] are cons-
istent. Assuming that we have at least one add-
itional chain to avoid the inherent degeneracy
stemming from the linear nature of the constraint
equations, the locking configuration now yields one
degeneracy in [G] since [G¥] is singular, This
results in loss of control of the rotational stiffness
of Ky. which in fact directly addresses a degene-
racy in [HL

In fact, this loss off stiffness control will result
if any set of these of nine potential “independent”

inputs exhibits this type of locking configuratien,
On the other hand, spatial mechanisms have less

chance of this “second-order” singurality since all
partial instantaneous screws of the system are not
in the same plane, but are scattered in 3 dimen-
sional space, Based on the above analytic observ-
ations, the following conditions for full stiffness

generation will be postulated,
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Figure 5

Conditions for full stiffness generation
A closed-chain mechanism is capable of full

stiffness generation if and only if it satisfies

V=(C-D>D and J, >V+N

where

C : Number of Independent Constraint Eguations
[ : Number of Linear Constraint Equations

V : Number of Independent Nonlinear Constraint
Equations

N : Degree of Freedom in perational Space

D : Number of Independent Stiffness Elements=N
{(N+1)/2

Ja : Number of Active Joints

ii JEvery possible system Jacoban [G%] should
be nensingular

As another example, a stewart platform with
30 independent constraint equations {6 holonomic
constraint equations in each of 5 independent loops)
and 36 possible active joints (6 jpints in each of
6 legs) needs at least 27 actuations to satisfy
complete stiffness generation,

Once the previously postulated conditions are
satisfied, such a mechanismn can be potentially used
as an adjustable nonlinear spring, which is an
mmportant concept for designing adaptive RCC
devices, Effective diagonal stiffness, which is useful

for precise position and force control applications,

can be generated,

The aforementioned RCC device concept is not
without precedent. Cutkosky and Wright [1985]
designed an active wrist to control the location
of the *Center of Compliance’ and the active sti-
ffness at the same time. It is noted that they also
used a parallel type mechanism!four bar)structure
to create an active stiffness because of its benificial
nonlinearity. However, their device has limitation
m the Center of Compliance workspace and in the
range of stiffness. Design of active RCC devices
was proposed as a prospective application of active
control of nonlinear springs {Yi, etal, 1989]. In
that sense, the discussion here will provide a dir-
ection for development of general design method-
ology for adjustable RCC devices in terms of their
geometric configuration, Yi, et.al {1989} employed
this methodology for a Feedforward stiffness
control concept, It is based on the idea that the
redundant actuation of Kkinematically dependent
inputs allows one to preload the system, potentially
creating a beneficial restoring force which acts as
an effective stiffness to compensate for disturba-
nce, and also to gain a certain force level in an
open-loop fashion. Redundant actuation also allows
distribution of the load carrying responsibility
among a muluplicity of potential actuation sets
based on a variety of criteria ([Yi, etal, 1990].
[Walker, et.al, 1983], {Nakamura, 1988], and [
Cheng and Orin, 1989 ).

3.2 Open-loop Stability Analysis

It 15 also important to note that the antagonistic
prperty has been omitted in the derivation of the
effective stiffness of serial robots and the effective
stiffness in multifingered hands, In many force
control papers, robot stiffness 15 not explicitly
denoted. or only structural stiffness (joint and link)
Is treated, excluding the antagonistic stiffness that

is actually inherent in these systems, This may
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be because the typical industrial manipulator is
a position control device as such it is made heavy
and stiff, and the drive system has a high gear
train ratio. In fact, the effect from external dist-
urbances on joint motion in such systerns is neg-
ligible. This implies that the antagonistic effect
is small. However, in Direct Drive systems which
have a backdrivable actuator system (constant int

torques) dus to negligible friction and no gear ratic
and backlash . the antagonistic effect will be a

dominant factor in the system's effective stiffness.
Therefore, the open-loop siability of mechamsms
with backdrivable actuator systems will be studied
in the following.

In static equilibnum, assuming the structural
compliances are negligible, the effective operational
space stiffness {Kyy] of a general robotic system
with backdrivable actuators is obtained as follows

L Y1, etal.1990]

R KT r.¢
Kyl = T 16Ty 0 [ Hyyl

+ FehT K, ol (314)
where

KT, KAT, KeT _KET
(Tl =t @ @5
(3-15)
and

Koyl = 1Kyl * Kyl

The first term in Eq.(3-14) represents the active
stiffness created by the antagonistic actuation
{({(TX)M)T, external spring preloads ((T¥,)")T [
Freeman and Tesar, 1988], and gravity or external
load balancing ((T%,)F)T. And also, the second

term in Eq.(3-14}) includes joint servo controller

G R E i 10 % 6 WD)
action [,KF,]). and effective external spring coef-
ficients [(KF,le. In the following study, feedback
[Kg) is not taken into account, but the effect
of each antagonistic stiffness term on the system's
stability will be studied in terms of several simple

llustrative examples,

Antagonism from gravity loading

Figure 6 shows a simple example of antagonism,
A backdrivable actuator supperting a constant
gravitational load at the end of massless bar tllu-
strates an antagonistic situation. The open-loop
stability of this system can be easily descibed due
to its simple geometry. In Fig. 6, once a disturb-
ance is imposed on the system, the system will
produce a restoring force equal to the difference
bewteen the constant torque and the moment due
to the gravitational force. However, in Fig, 7 the
resulting effective load will result in motion away
from equilibrium, For more general geometries, we
need to measure the open-loop stability analytically

since physical interpretation is not immediate.

Figure 6

Figure 7

When one bar of Fig. 6 is in static equiibrium,
the effective load at point O will be
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- .
= = :'lb}
To=- Ty + MgheosB = 0. (3

An effective restoring force is generated against
external disturbances, and its behavior can be

modeled as a spring action as follows
ATO--Mgl..'iineoA9= —KOAB (3-17)

where, T, is constant

The stiffness property
KB - Mgl.sineo (3-18)

is found as a good measure of antagonism in that
it quantifies the resistive nature of the system.
It shows a stable system action.

Here, the antagonistic stiffness is equivalent to
the second derivative of the system's potential
energy with respect to independent variables, Note
also that, in static equilibrium, the system’s pote-
ntial energy can be represented as the negative
of the system'’s virtual work,

However, for the configuration given in Fig, 7
. slightly different from Fig, 6. the system's eff-
ective stiffness will be obtaimed as follows(positive

¢ direction reversed )

Kg = - MgLsing (3-19)

Thus, as explicitly shown here, the configuration
of Fig. 7 has an unstable dynamic behaviour since
the system stiffness is negative definite, Therefore,
system geometry is obviously critical with respect

to open-loop stability

Antagonism from redundant actuation
As another example, Fig. 8 shows a four bar
mechanism with antagonism. A four bar is a sim-

ple closed-chain mechanism with one degree of

freedom,

L,
Ll/ ’ Ly
"5
4
L, -

Figure 8

Figure 9

However, if we actuate more inputs than there
are kinematic degrees of freedom, the system
becomes antagonistic,

Based on the geometry given in Fig. 8, the
Jacobian gf, which relates the angular velocity of
pint 2 to the angular velocity of joint 1, is obta-

med as follows

2
Bt ™ L1S14/L254 (3-20)

where Si14 and Si2 denote sinl¢h-¢)  sin{gh-g),

respectively. And also the Jacobian

4
8= L5135, (3-21)

relates the angular velocity of jpint 4 to the ang-
ular velocity of jint 1. This Jacobian is a first
order geometric property, The second order geom-

etric property hj, involved in relating the angular
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acceleration of joint 4 to the angular acceleration

of pint 1, is derived as follows

42 2
. LiCy o Ly(81Y Cyp* ‘-2(8}11’
hll - S .
LS4, (3-22)

In equilibrium, the effective load(Ta)™ at joint 1

can be expressed as follows

. 4T 4T 4
(r’i) T¢1+(gl) T’4'0, (gl) -gl.

(3-23)

Assuming a small displacement, the restoring force
will be defined as

m' ) = -K’]A’]

1

AT
MY )Ty, (3-24)

since T, and T, are constant (in an open-loop
sense). Now, an antagonistic stiffness is defined

as follows

. 4
Y T e B R N & S

By analogy with the one bar example, Ks, is the
inherent system's effective stiffness with respect
to joint ¢,

Now, for two different antagonistic actuation
modes are shown in Fig.8 and Fig9, a question
arises regarding the stability of the two modes,
Assume that the four bar is initially in an equil-
ibrium state in both antagorustic modes. If we
disturb the system by small amount, then the
system will behave like a spring in such a way

as to minimize the system potential energy. How-

MR 10 & 6 B(1991)

ever, the stability of this springlike action will
depend on the positive definiteness of the system
stiffness. Therefore, the definiteness of the system
stiffness will be studied for the two different
antagonistic configurations,

Form Eq.(3-25), if a clockwise actuation is set
as a positive effort, we can quantify the value
and sign of stiffness K4, based on the sign of h'
s For the model of Fig9, where Ty, is positive,
if hy is positive, the system with this mode of
antagonistic actuation is unstable with regard to
any external disturbance. On the other hand, the
medel of Fig8 will be stable, However, it is not
easy to see the nature{such as magnitude and
sign) of hi since it is a highly nonlinear equation,
It is concluded that for the same configuration
with the different internal loading the system has -

different open-loop stability.

Antagonism from non-potential external force
Fig.10 represents a force controlled Direct Dirve
serial manipulator in contact with a moving or

fixed environment,

Figure 10

The system’s effective load in operational space

is
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s ¢ T+ _ .08
T, '1’.ﬂ + [Gu] T’ =0. (3-26)
Now, an antagonistic stiffness
(Kyyl = &TFy) o [HT ] (3-27)
is defined utilizing the same restoring force analysis
as in the one- and four-bar cases,

Here, the same system will be analyzed from
both an analytic and a geometric point of view.

Figure 11

For the open-chain of Fig.11, the end-effector
position is generally represented by the following
three -equations

T = LG +LyChap * L3Chunes (3-28)
Yn= L1181+ LyS14p + L3Sy 4043 (3-29)
=ttt (3-30)

Where Sy, Siz, Cizes and Cy., denocte sin( ¢ .+ ¢
o+ #2), sin( é,+ ¢,), cos( @,+ $,+ ¢,). and cos
( ¢+ ¢.). respectively. Restoring force analysis
1s performed for the first axis ( ¢,). The effective

load for axis ¢, is

»

leTI- xyh"-Fyxh*'m*O (3-31)

and a restoring force vector is generated against
system disturbances that cause pint displacements
Ag, A, and Ad, according to

. 9T ey T
AT| = ——A8) + —89y+ — As :
N o, 2 ey 3 (3-32)

where the end-effector force is assumed to be
constant. The effective stiffness elements with

respect to the first ypint are defined as

9T,
o)

Kygl12 =~ g = Fylxy- ) + Fy iy B) (3-34)
ar‘

{
Kooly3 =+ — = Fylty- 9 +F, 0y ).
ASCARIET y (3-35)

where the constant joint torques and end-effector
moment m do not contribute to the system's sti-
ffness as linear angle constraint equations do not
contribute to stiffness generation,

The effective load for axis ¢, is
E
Ty=Ty - ROy b+ Fy (j-ay+m=0 (3-36)

and a restoring force vector is generated as

ATy = =88+ A4y + —— A4y
-0y ¢, e, (3-37)

where the effective stiffness elements for the

second int are defined as
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a-r‘
(Kyqys =- 6712 = Fliy 9+ F 0y D) (3-38)
aT

2
{K”]Z;z" ;;’ nd x(xh-a)d-Fy(yh-b) {3-39)

T
[Kygl2:3=- ;’; = Fe(xy- 0 + Fy Oy 9)-

(3-40)

Finally, the effective load for axis ¢, is
Ty=Ty- Fylp O+ Fy -9 +m=0 (341)
and a restoring force vector 15 generated as

- » -
AT’ ?.T_._‘?:A¢ + @A’ +* &A’
3T 00 N e, 2 a0

(3-42)
where the effective stiffness elements for the third

pint are defined as

T3
(Kogl3:1 =~ o, = Fylty- O + Fy 0y ) (3-43)

»

aT

3 .
Kygls2 = o Fy(ty-©) + Fy - ) (3-44)

-

[K”Ia.3 it E = Fx(xh‘ c)+ Fy (yh' d).
T 0 (3-45)

Combining all the above analytics, the antagon-
istically generated stiffness matrix [K¢ 4] (alternate
form of Eq.(3-27)) is shaped as follows

pst
K. ]= sst:l
Kool [ttt (3-46)

NG R 10 B 6 SRO1991)

p= FeXp* Fyyy (3-47)
s= Fx(xh- a) + Fy Op: b) (3-48)
t = Fy(ty-©) + Fy Oy ). (3 49

The necessary and sufficient condition for [Ksy ]

matrix to be positive definite is(see Appendix 2

p>s>t>o. {3-50)

Here, three sub-conditions are considered and

graphically caombined in Fig.12.

Kh'CF .
)t>0 : F >- (3-51)
) y Ty -dx

#) s>t Fya--ﬁ—:-%l:x (3 52)
ihp>s Fy-%&- (3-53}

Figure 12

Y

Figure 12
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For the given configuration{Fig.12}, the system
1s stable if the resultant force vetor F applied to
the end-effector is within the the shaded area(
common area of the 3conditions), Note that dashed
lines on the boundaries of shaded areas are not
included in the stable regions, Fig.13 shows another
configuration with its stable region, which is con-
siderably larger than that of the first example.

Antagonism in Dual Arms and Finger Grasping
Fig.14 and Fig.15 are intended to illustrate both
dual arm and grasping operations. Yi, et.al.[199
0] have treated the stability of these systems
quantitatively in terms of antagonistic stiffness

as follows
2 T, Ty?
Kyl = E 16T o HY ). (354)

where ([T% and ["H],] represent the required
jont input for an internal loading and the inverse
Hessian for the r** chain{arm, finger}, repectively.

Here, as the illustrative treatment of this situa-
tion, grasping under intemal squeezing will be
considered, In Fig.14 and Fig.15, each sub-chain
can be considered as an open-chain serial arm(Fig.
12 and Fig.13) encountering point contact.

In grasping operations, stability of each chain is
a sufficient condition for object stability{assuming
the nominal grasping forces quarantee contact
stability), since each chain will transmit a stabiliz
ing restoring force to the object. Assuming no
moment applied to end-effector, as seen in the
previous planar arm example, the squeezing force
in finger grasping always yields an unstable factor
to system’s stability and the stable region varies
according to the system'’s configuration. Therefore,
it is imperative to realize that open-loop stability
has a strong interdependence with system'’s internal

loading mode and the configuration, In the previous

Figure 15

literature concerning grasping stability, this so called
“geometric stability” has not been considersd. It
is interpreted that current finger systems (Cutko-
sky and Kao, 1989} were designed with nonback-
drivable, tendon and gear driven actuation systems
in which case the antagonistic effect caused by
the “rigid” shaft displacement is negligible due
to the system friction and the high gear ratio
between the actuator shaft and the drive link.
Howevér, when employing backdrivable actuators,
promising for finger design and advanced robotic
drive systems, the inherent antagonistic stiffness
porperty plays an important role in the system’s
stabilty as observed in this paper.

V. Conclusion
Kinematically constrained, redundantly actuated

situations occur in normal operating modes of robotic

systemns, In these modes, the system becomes
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antagonistic. The resulting inherent effective stif-
fness was found to be a good measure of the
antagonism, This knowledge can be used to enh-
ance the operational performance in naturally
constrained linkage systems. The conditions for
full active stiffness generation were investigated
and are expected to be useful in the design of,
redundantly actuated, RCC devices capable of
adjustable task-space stiffness generation. One bar
and four bar mechanisms were given as simple
examples to show the stability of two different
modes of antagonism, and the basic idea was
extended to general closed -chain mechanisms, such
as multi-fingered hands and dual arms. Open-loop
stability due to the mamipulator configuration is
considered as another significant factor in system
stability, especially in backdrivable systems.
Finally, it is shown that geometric insight is of
significance in understanding the dynamic nature

of a mechanism with antagonism,

Appendix 1|

Generalized Scalar Dot Product{o)
[A) o [B] = [C]

where

[A}=PxQ
(B]=QxMxN
[C]=PxMxN

Skl = ? b

i:plane of C, row of A
k, 1:row, column of C and B

j i column of A, plane of B.

This operation was originally defined by Freeman

SRR AL 10 R 6 MO1991)
and Tesar[1988]). 1t plays a primary role for the
systematic development of isomorphic transfer
techniques, What this operation does is uniformly
scale of each matrix in [B] by a scalar({each
compenent of row &y j=L.-~N) and then sums

them all as the following graphic example

Example : ¢y
]
o p=TEEIT
|
= -
=t
Appendix 2

The condition for a matrix to be positive definite
is that the determinants of all principle minors

should be positive, For a given 3 by 3 matrix,

— N h

—
~ g
Ll adiad
[RR—

the following three conditions for the determinant

should be satisfied. For the first minor,
det(p)=p>0
and for the second minor,

det[ E:]'(p-s)sbvo

here, s cannot be negative since(p-s)s will always
be negative. Thus, s should be positive and also

less than p. For the third minor,
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pst
det[ ss 1]=(p-s)t(s-t)>0
Tttt

here, t cannot be negative since(s-t)s will always
be negative. Thus, t should be positive and also
less than s. Now, by combining the above results
the necessary and sufficient conditions for the

matix to be positive definite is as follows

p>s>t>0,
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