Computational Study on Swirling Turbulent Flow in a Stationary Pipe

정지된 도관내 선회류에 관한 수치해석

  • Published : 1991.12.01

Abstract

A numerical computation of turbulent wirling flow in a stationary pipe is presented in this work. Major concerns of this study are: 1) To approve similarity laws which were verified experimentally. 2) To investigate the effects of curvature modification for the K- .epsilon. model. To account for effects of swirl, Rodi's curvature correction and Kim & Chung's are applied. The governing differential equations for eliptic flow are discretized by control volume formulation method, and the discretized equations are calculated ay line by line TDMA and SIMPLE algorithm. The computational results also satisfy similarity laws which are based on swirl angle as in experiments. And the curvature modification of Rodi improves compuational accuacy than the standard K- .epsilon. model. But such lower order closure models are not adequate for the prediction of this complex flow.

Keywords