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1. Introduction

The present study investigates a method of
predicting the threshold crossing time by solving
a nonlinear rolling equation of motion of a ship
in irregular waves. Since the nonlinear nature of
the rolling motion of a ship in waves is very co-
mplicated, a complete analytic solution of the pro-
blem has not been proposed so far.

In the past, those approaches to solve this pro-
blem can be illustrated as an equivalent linear
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equiation,” a perturbation method,”’ and functio-
nal representation method™*. But these yielded
only limited information on the roll response sta-
tistics such as a mean square of the roll angle.

Another approach which is able to predict the
form of the response distribution for nonlinear
systems response in Fokker - Planck - Kolmogo-
rov(FPK) mothod. Dunne® has developed a new
approximate method for dealing with a nonlinear
systems which are disturbed by excitation that
can not be adequately classed as wideband, and

modeled as white noise. He combined the method
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of equivalent linearization and the FPK technique
to obtain some useful results. The method has
been applied for estimating threshold crossing ra-
tes. The theoretical results were tested with inte-
nsive simulation results. That is, their method is
based on the assumption that the crossing prope-
rties of the response can be approximately repla-
ced by the excitation with a white noise process
of suitable intensity. Then they reinstated the no-
nlinear restoring function from the equivalent li-
nearized equation of motion.

The present study reinstates the full nonlinear
damping and nonlinear restoring function with
the equivalent white —noise intensity so that the
non - linearity in the damping can be adequately
modeled. This white —noise exited nonlinear
equation of motion is solved by average method
to obtain the needed joint probability density fun-
ction.

2. Roll

Response Model in Random

Beam Seas

If the influence of all other degrees of freedom
can be neglected, the equation of motion of a ship
rolling in random beam waves can be written in
the following form

6+D(0) +R(6) =n(t)

wher 8 is roll angle, D(@) represents damping
function, and R(8) represents a restoring func-
tion, and n(t) is a Gaussian random process with
zero mean and spectrum S(w@). The time scale is
chosen so that the undamped natural roll freque-
ncy is unity. The damping and restoring function

can be represented as

D(B) =C0+ Ccg® w-erereremrmrrememenneeneines (2)
R(O) =@+ K307 creorrrrrrmranermenemmnaienaes (3)

Solving equation (1) means the determination

of a limited amount of information about the so-
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lution process. The threshold crossing probability
can be considered as useful statistics. So the th-
resholds 6=+a considdered in this study are
high enough to be regarded as dangerous. The
number of upcrossins per unit time of 9 at thres-

thold a>o0 can be written as”

A@=[6 fa 0) do

where (0, ) is the joint probability density
function, and the mean time p{a) between upcro-
ssings is the reciprocal of A (a)
1

A (a)

ua)

3. Exact Solution

When a dynamic system is subjected to white
noise excitation, the exact solution can be obtai-
ned thruogh the FPK equation. A few exact anal-
ytical solutions of FPK equation exist for random
vibration problems. The most general solution is
due to Caughey.” Consider the following equation
of motion for a single degree of freedom system.

0+06H(E) +g(8)=Z(t)

where

E:i 92+V(9) ........................
2

Where E represents the total energy of the sy-
stem, V(0) is the potential energy of the system,
Z(t) is a white noise which has a constant spect-
ral density J. Caughey has shown an exact solu-
tion for the probability density function (6, ) is
as follows

v 2k
(8, 8)=C exp [Tf H(‘é)di] ...............
0
When D(8)=C8, the stationary joint probabi-
lity density function can be obtained using equa-
tion (8) as
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(0, 0)=A expl~" Rwau+— &) K= IEG® 6)) - 2E0IE® O]
.............. JO (9) ZE{O}E{B}_ZE{%} (15)
where A is a normalizing constant. The mean Where E{ | represents the expectation pro-
upcrossing time can be shown as cess. The expectation in equation (14) & (15)

j; exp{— %C—lj: R(wduldv

u(a) = 73 oC. - (10)
—lfoR(u)du}

are not available. The present study employed the
iterative scheme which initiated with the initial

( guess. For the linearized system, the mean upc-
e/ exn{—
2V, J rossing times ps.,{(a) and w{a) can be readily

obtained. That is

2

4.  Nonlinear Damping, Non—White

Os1
. syla)=2n—— exp{ Jrovronenn (16)
Excitation HS(w os2 2651
On a
. (a) =20 exp{———— }eereriiiis

The present method is based on the assu- K o P 20 } an

mption that the crossing properties of the re- .
where

sponse of an excitation can be approximated
by replacing the excitation with a white noise os'=] | H(w)l? S(w) do

process of suitable intensity J. .
o’=] | Hw) |* S(w)dn

4.1 Equivalent Linearization ‘ « )
on’=][ | H( |* do

First the system is linearized in a conven- )
tional way. Consider an alternative form of CﬁzZ:JLac o’ | Hlw) | *do
equation (1)
and where H(w) is the frequency response func-

O+ A) = (1) cererreeerieciiiiiiiniies 1 ) )
6+¢(0 6)=nt) (1) tion which can be represented as
. . A . ed 1
The equivalent linearization technique apphe- H(w) = S SR (18)
to equation (1) replaces the system by an equi- [(Keg—@?) +iCoq ]

valent linear system . .
4 The value of J is chosen to minimize the

04 Ceg 0F Ko @=n{t) evvevvvemmvnrimmninnnns (12) square error
The equivalent linear system in (12) are dete- fo T Lpse(@) — (@) 12 da oeeeeeeeeeene 19)
rmined by minimizing the mean square of the li-
nearization error Where aAmsx 1S a Ssuitable hlgh threshold. The

newly determined J is the best fit for the mean

e=Cf KD —g(B, 0) ooreerererreene (13) crossing time functions over the range of thre-
The optimum linear terms can be expressed shold of interest. If one reinstate the nonlinear
as damping and the nonlinear restoring, the equation
- E{0*|E{0g(0, 6)] —E[06}E{0g(0, 0)} (1) can be rewritten as
eq

............. E {BZ}E{GZ}_EZ{GG} (14) 0+D(O) +R(O) =\/T Z(1) ++rrveeeeeees (20)

Where Z(t) represents the white noise excita-
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tion. If we can get the probability density function
of equation (20), then the expected values in
equation (14) and (15) can be obtained. Thus the
whole process can be an iteration scheme. The

whole process is shown in Fig. 1.

6+ D(O) + R(O) = n(t)

I

. L.
(Coq, K.q) <

T
0+ Cof + KeaP = n(t)

l Moments
white noise E{6}.E{63}
approximation etc.

I
0+ D) + R®) ={J Z(t)
T

£(8,6)

1

p(a)

Fig. 1 Structure of the prediction method

4.2 Average Method

The average method for the random vibration
studies described by Roberts and Spanos® i ado-
pted to calculate the approximate value of (8, 6)
for the equation (20).

The basic concept of the method for randomly
excited oscillators is as follows when the energy
dissipated per cycle is due to light damping, the
total energy can be treated as approximately con-
stant over one cycle of oscillation. The period of
free oscillation is found to be given by
de

’I‘(E):4Ji ?/?(Ef{ﬁ ........................ (21)
where 6, is such that
V(e‘_):E ....................................... (22)

The error integral

can be minimized with respect to H(E). This yie-
Ids the following expression for H(E) for use in

equation (20)

[ DEE-V©)T do
H(R) = (24)
jo“ [2(E-V(8))]'* de

A combination of equation (8) and (24) now

gives an approximate expression by (6, 0).
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Fig. 3 Mean upcrossing time vs. threshold
(J:007, C1:0.2, K';: ‘"0.5)

5. Numerical Results

To apply the proposed scheme to non—white
excitation, the following test spectrum was adop-
ted following Dunne” for the mutual comparison
purpose

Slw)= - P
@ 1-(P-1 | o—wy | e
0 W>®
....................................... (25)

Where ]. @i, and P are scale, location and

shape parameters respectively, with P=1 repre-
sents the white — noise process. Fig. 2 shows the
shape of the test spectrum, and the frequency re-
sponse spectrum.

Fig. 3 shows mean crossing time against thre-
shold for white noise intensity J=0.07, nonlinear
coefficient K;= — 0.5, linear damping ration C,=0.
2 and three values of nonlinear damping coeffi-
cient C,. The square represents the simulation
points which are given by Dunne for comparison
purposes. The dotted line represents the results
obtained by Dunne. Dunne obtained by reinsta-
ting the nonlinear restoring function, but with li-
near damping. The solid line represents the pro-
posed scheme. The higher the damping, the lar-
ger the mean crossing time as expected. The res-
toring function is plotted against the roll angle to
show the non linear region of restoring. The pro-
posed scheme shows better results over the Du-
nne’s scheme. Fig. 4 is similar except that J=0.
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Fig. 4 Mean upcrossing time vs. threshold
(J=0.05, C,=0.02, K;= ~0.5)
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05 and C,=0.02. Even though the nonlinear dam-
ping coefficient is much larger than the linear
coefficient, the proposed scheme agress well with
the simulation results.

The linear damping is considered next. The re-

sults in Fig. 5 shows that the proposed scheme
and the Dunne’s scheme give very similar results

with each other as expected.

Fig. 6 and Fig. 7 are similar to Figs. 3 and 4,
except that C;=0.6 and the parameter P varies.
The proposed scheme shows better results than
that proposed by Dunne when the nonlinear da-

mping dominates.
6. Conclusions

The following conclusions are drawn from this
study.

1) The crossing properties of the response can
be approximately replaced by the excitation with

a white noise process of suitable intensity.
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Fig. 5 Mean upcrossing time vs. threshold
(JIOOQ, C1:0.4, C3:0, K3: _05)

£
! °
1t
it

—~
§ 1000
~—
—_
o
~—
=
500

I G AU U BTN ST U R U A U G U S AN S U

o

50 60 70 80

a(o)

[
o
[2)
(-]
P
o

Fig. 6 Mean upcrossing time vs. threshold
(J=007, C,=0.2, C;=0.6, Kz=—05)

u(a) (sec)

8

30y e st i by ya gy tapalan g g i alayeaaagyy

¢} RSN REARNRARRANREREASLARLEE AR

80
a(e)

N
(=)

Fig. 7 Mean upcrossing time vs. threshold
(J=005, C,=0.02, C;=0.6, Ks=—0.5)



Stochastic Prediction of Rolling of Ships in Irregular Waves 197

2) The proposed scheme which reinstates the
full nonlinear damping and nonlinear restoring
with the equivalent white - noise intensity gives
a relatively good agreement with the simulation
results.

3) The proposed scheme can be readily exten-
ded to a real sea spectrum with the introduction

of appropriate frequency response function.
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