Oxygen Chemisorption of ZrC(111) Surface by High-Resoltion Electron Energy Loss and Ultraviolet Photoelectron Spectroscopy

고분해능 전자에너지손실 및 자외선광전자분광법을 이용한 ZrC(111)면의 산소흡착 연구

  • Hwang, Yeon (Department of Inorganic Materials Engineering, Seoul National University) ;
  • Park, Soon-Ja (Department of Inorganic Materials Engineering, Seoul National University) ;
  • Aizawa, Takashi (National Institute for Research in Inorganic Materials) ;
  • Hayami, Wataru (National Institute for Research in Inorganic Materials) ;
  • Otani, Shigeki (National Institute for Research in Inorganic Materials) ;
  • Ishizawa, Yoshio (National Institute for Research in Inorganic Materials)
  • Published : 1991.12.01

Abstract

Oxygen chemisorption on single crystal ZrC(111) surface was studied by high-resolution electron energy loss and ultraviolet photoelectron spectroscopy. At a low amount of oxygen exposure, adsorbed oxygen atoms construct $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ structure. On the other hand, oxygen adsorption changes into $1{\times}1$ structure as the amount of oxygen exposure increases. The adsorbed oxygen atoms show smaller vertical distance from the Zr topmost layer in the $1{\times}1$ structure than in the $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ structure and approach to the bridge site rather than 3-fold hollow site. The two different oxygen adsorption behavior comes from the two different surface stales of the clean ZrC(111) surface.

고분해능 전자에너지손실과 자외선광전자분광법을 사용하여 단결정 ZrC(111)면의 산소흡착을 연구하였다. 산소는 낮은 산소노출량에서 $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ 구조로 흡착된다. 노출량이 승가하면 $1{\times}1$ 구조로 바뀌는데 이때 흡착하는 산소원자는 $(\sqrt{3}{\times}\sqrt{3})R30^{\circ}$ 구조에서보다 흡착높이가 낮으며 3-fold hollow site의 중심에 놓이지 않고 bridge site에 가까와진다. 서로 다른 산소흡착 거동은 개끗한 ZrC(111) 표면에서 두개의 표면전자상태에 기인한다.

Keywords

References

  1. J.Less-Comm. Metals v.82 C.Oshima;M.Aono;S.Zaima;Y.Shibata;S.Kawai
  2. Surf.Sci v.157 S.Zaima;Y.Shibata;H.Adachi;C.Oshima;S.Otani;M.Aono;Y.Ishizawa
  3. Solid State Commun v.37 A.M.Bradshaw;J.F.van der Veen;F.J.Himpsel;D.E.Eastman
  4. J.Phys.D:Appl.Phys v.22 Y.Ishizawa;S.Aoki;C.Oshima;S.Otani
  5. Low Energy Electrons and Surface Chemistry G.Ertl;J.Kuppers
  6. Adv.Chem.Phys v.49 E.W.Plummer;cap.Eberhardt
  7. J.Cryst.Growth v.51 S.Otani;T.Tanaka;A.Hara
  8. Electron Energy Losss Spectroscopy and Surface Vibrations H.Ibach;D.L.Mills
  9. Surf.Sci v.199 R.Soua;C.Oshima;S.Otani;Y.Ishizawa;M.Aono
  10. Jpn.J.Appl.Phys v.20 M.Aono;C.Oshima;S.Zaima;S.Otani;Y.Ishizawa
  11. J.Vac.Sci.Technol v.16 P.M.Stefan;C.R.Helms;S.C.Perino;W.E.Spicer
  12. Surf.Sci v.188 T.Komeda;Y.Sakisaka;M.Onchi;H.Kato;S.Masuda;K.Yagi
  13. Surf.Sci v.77 J.Kuppers;G.Ertl
  14. Methods of Experimental Physics v.22 Work Function Measurement L.W.Swanson;P.R.Davis;R.L.Park(ed.);M.G.Lagally(ed.)
  15. J.Magn.& Magn.Mater v.31-34 T.Hoshino;M.Tsukada
  16. Phys.Rev v.B14 H.Froitzheim;H.Ibach;Cap.Lehwald
  17. Surf.Sci v.173 N.D.Shinn;T.E.Madey
  18. Surf.Sci v.95 J.L.Gland;B.A.Sexton;G.Cap.Fisher
  19. Phys.Rev Lett v.44 H.Ibach;D.Bruchmann
  20. Surf.Sci v.173 A.G.Baca;L.E.Klebanoff;M.A.Schulz;E.Paparazzo;D.A.Shirley
  21. J.Vac.Sci.Technol v.16 B.A.Sexton
  22. Surf.Sci v.188 T.Komeda;Y.Sakisaka;M.Onchi;H.Kato;S.Masuda;K.Yagi
  23. Phys.Rev.Lett v.51 S.Anderson;P.A.Karlsson;M.Persson