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CoO3-v on the oxidation of CO is determined by the degree 

of nonstoichiometry due to the incorporation of foreign atom 

such as Sr.
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The Approximate Electronic Solutions in A Closed Form, 
for f.c.c., b.c.c. and h.c.p. Clusters

Gean-Ha Ryu and Hojing Kim*

Department of Chemistry, Seoul National University, Seoul 151-742. Received August 1, 1990

A cluster made of M, NB and Nc atoms in the xt y and z directions respectively, is treated with Hiickel method. 

We obtain the approximate expressions for the eigenvalues and eigenvectors of f.c.c., b.c.c. and h.c.p. clusters in 

closed forms. The maximum and minimum values of the band so obtained converge to those derived from the 

Bloch sum in the limit of infinite extension. For a small cluster (of 9X9X5 atoms, for instance), LDOS from the 

analytical (approximate) solution manifests better agreement at the surface, than inside the bulk.

Introduction

There are two main streams in assessing the interaction 

between an adsorbate and a solid substrate. The methods 

of solid state physics1-3 treat the substrate as a semi-infinite 

solid, which has infinite extent in the ±xr ±y, and ~z direc

tion and has surface at z = 0, or as slab, which is a solid 

of finite thickness l요 but has infinite extent in the ±x and 

±y directions. On the other hand, the methods of molecular 

quantum theory4 6 approximate the metal substrate as a clu

ster of finite number of atoms.

One question which immediately comes to mind with re

gard to cluster representin빙 a metal substrate is: how many 

atoms are needed in the cluster to describe the metal ? 

The answer to this question will obviously depend upon 

which properties of metal one wishes to describe. Empirica

lly,7-9 it is known that localized effects, such as metal-adsor

bate bonding, can be treated successfully with a moderate 

size of cluster which is within a computational reach through 

most molecular orbital methods. However a cluster of 50 

atoms or less, which is already quite a computational feat, 

would be sorely inadequate for the discussion of a number 

of solid state aspects of the substrate, such as bulk cohesive 

energies and work functions. In practice, therefore, one 

should investigate and justify the convergence of results as 

a function of cluster size. It would be very convenient, if 

one has an analytical measure, to treat a cluster of an arbit

rary size, in a consistent way. In a limit of infinite size, 

the method should reproduce the results derived from bulk 

solid.

Using simple Hiickel theory, Messmer10 had shown that 

for a simple cubic (s.c.) array of atoms, the eigenvalues and 

eigenvectors can be obtained in a closed form for any size 

of cluster up to the infinite solid.

Here an extension of this to other lattices is intended. 

That is, the solution of closed form is persued, within a 

framework of Hiickel theory. The major obstacle is a large 

coordination number (12 for face centered cubic, while 6 

for simple cubic) which leads to an unfavorable form of the 

secular matrix. A cluster of average configuration is thus 

conjectured, and there results energy matrix of manageable 

form. Analytic (Hiickel type) solutions for face centered cubic 
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(f.cc), body centered cubic (b.c.c.) and hexagonal close-pack

ed (h.c.p.) lattices are derived. In the limitting case of an 

infinite extension, the maximum and minimum eigenvalues 

from the present method can be identified with those from 

the Bloch function11 describing the infinite lattice.

Theory

It is started with a simple one-electron Hamiltonian H, 

within a tight-binding linear combination of atomic orbital 

approximation. If one chooses a cluster with one atomic s- 

orbital x per site for simplicity and only interactions from 

the nearest neighbors are taken into account, then the sys

tem is completely characterized by its Hamiltonian matrix 

elements given by

<%p I I Xm> = £o ⑴

<Xm I I Xv> —「t (if 卩 and v are the nearest neighbors)

L。(otherwise)
(2)

The subscript is a label for the site of atomic orbitals. As 

it is common in the tight-binding approximation, the overlap 

integrals are neglected, i.e.,

<Xm I 右〉=6" (3)

Assuming that the cluster consists of M, Nb and Nc atoms 

in the x, y, and z directions, respectively, one can arrive 

at a secular equation

(H一印=0 (4)

of dimension NaNbNcXNaNbNg The matrix H contains the 

matrix elements of Eqs.(l) and (2), the matrix e is the unit 

matrix multiplied with e; D is the eigenvector matrix (co

lumn vector), which is made of the linear coefficients 

of the atomic orbitals such that

岛=£d邱Xa 0 = 1, 2,…，NaNbNc (5)a
Then the eigenvalues are obtained by the solution of

\C \ = 丨=0. (6)

The index I of each atom in the cluster is given by

j, k) (7)

where ，…Na, ，…N% k~l,-"Nc, and i, j and k provide 

a sequential label for the positions along the x, y and z axes, 

respectively. The serial number of the atom is

a=(^~ 1) NbNa + UT) Na수i (8)

The f.c.c. 이uster stacked with (1, 0, 0) planes (Figure 1) 

is considered*

The matrix C of Eq.(6) for the cluster is

Figure 1. The f.c.c. cluster. The open cir이es denote atoms at 

first, third, ...layers and the shaded are for second, fo나rth, ...pla

nes of (1, 0, 0).

where the matrix 爲 is the transpose of the matrix J % and 

the matrix Ob is a null matrix with the dimension of the 

matrix B. The C is an N/Nc matrix when written in terms 

of these B, Jb, 7b and Ob matrices of the identical dimension. 

The matrices B and Jb are

and

B=

Jb =

'A Ma 0a Qa

A Ox

0.4 A t【A

_ Ja 0a …

Ja Ja Qq …

Q Ja Ja …

(10)

(11)

which again have elements which are themselves matrices. 

In terms of A, Ja, Ia and OAl the matrices B, Jb and Jb are 

of - dimension The matrices IA and Oa are the unit

and null matrices, respectively, with the dimension of A. The 

matrices A and JA are

t 0 0

t e0~£ t 0
A =

0 t £o-£ t
(12)

and

「3 th 0b 0b 0a ....... .
r 1 0 0 ...... -]

B 0B 0b 0b……
1 1 0

Ub B th 0b .......
(9) Ja =

0 1 1 ......

0b 0b 即 B 如…… -: : -

(13)
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Figure 2. The f.c.c. clusters with four different configurations. 

The solid line depicts the odd-numbered layers and the broken 

line represents the even-numbered layers.

with the dimension of NAXNA. Thus the matrix C has 呻土 
rail dimension of NANANC X NANANC. 、上为

The procedure one will adopt to obtain the elution of 

I Cf I =0, may not be the most elegant derivation, but it 

has an advantage of being straightforward. To solve the pro

blem, it is only necessary to obtain the eigenvalues and the 

eigenvectors of the following type of nXn matrix:

~a b 0 Q

b a b 0

0 b a b

(17)

They are given as follows12:

which have dimension of NQKNa. The matrix C, of a single 

configuration, has overall dimension of MMNcXMN以Vc.

Here, the matrix C is not a very convenient form for analy

tic diagonalization. Four clusters (Na—Nb) are taken, which 

are created by rotation of 90 degrees about the z-axis from 

previous one successively, (Figure 2).

Labeling of the atoms, and atomic orbitals, in each layer 

starts from the upper left corner to the lower right corner 

(see Figure 1). The four configurations, which are physically 

equivalent, then give slightly different forms of secular ma

trices. The arithmetical mean of the four matrices is a fairly 

simple form as follows.

and

* ~a~^2b cos*

where

、一虫L (18)

(19)

~B |K8 Ox Ob

=Kb B =Kb Ob 

4 4

b 二

0/j B

(14)

In terms of the element B and 匕 K$, the matrix C is of 

dimension Nc〉〈N& The matrix Kb is

「2“ Ka 0.4

咖 

m + 1 (20)

；=1, 2,…，n

k = \, 2,…，n.

Now, one can obtain the eigenvalues and the eigenvectors 

of the matrix C:

1
B"=B + TKb COS"]

2
(21)

Ka 2Ka
Kb= 

0a 匕

Ka 0a

2Ka Ka
(15)

The matrix Kb is of dimension NAXNA, with each element 

being its이f a matrix. The matrix KA is

'2 10 0 ……'

12 10 ……

瓦= (16)
0 12 1 ……

儿、/ 2 、i，2 . knn
"S)=E SinN^lL'2

(22)

3=1, 2,…，M

n = l, 2,…，Nc.

revisit Eq.(17) with n—NATo represent Bn, one should

b 0 0 ……-

b a b 0 ........
& = (23)

0 b a b ……

where ■挣侦 cosQ：】 (24)

b = + § tKAcos 1끄f (25)

The eigenvalues and eigenvectors are
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岫，”）비瓦1門 血（辭］） (37)编=妇伽cos— +cos瓦有

where

wn 、
fl》 (26)

初=（瓦％）E岩］ (27)

j=l, 2, …，Na

^ = 1, 2,…，Na

respectively.

Amn is an NQHNb matrix of 比e form,

*c d o o ……_

d c d 0 ……

4冲= (28)

0 d c d .......

_ : :

心，小=（條「件sin嵩） (38)

Due to the averaging process of the four secular matrices, 

as stated earlier, the center of the atomic orbital xa located 

at an atom of even-numbered layer is not well defined. The 

shortcoming is nothing but a price one has to pay to obtain 

an analytical form of eigenvalues. The matter is taken up 

later at the section of discussion.

One can derive the eigenvalues and the eigenvectors of 

b.c.c. and h.c.p. 이uster, similarly to the case of f.c.c. cluster. 

The eigenvalues are:

,o. nn /- . /n , win印=&什効 cos— (l+cos 瓦-1 +COS"[

. I n wn 、
+ cos瓦〒1冲瓦立 (39)

for b.c.c. cluster;

c=Eo+力(cos 眾* wn
+ cosM+l

, wn m\ 、me、
+ COS^T1COSMT1!(29)

,o., Zn . wn . nix
Sb = &)+2£ coSm ,[ +cos z 丄 1 +cos■商一—

M + l Nb+1 M'+l

a—rl + cos xr , , + cos ,T ,, 
' Nc+1 Na + 1

nn \ 

cos瓦宥) (30)

. I n mn , mn wn 
+ cos .r . . cos .. , . +cos COS-.T ,

Na+1 Nb+1 Nb+1 Nc+1

, /n wn
+ cos., L~ cos 早 1、

M + l M+lTherefore the eigenvalues and 

A are given by:

eigenvectors of the matrix

.o.( Zn . mn , nn 이“，, =%+2t(cos 瓦-] +cose +cos 瓦市

2,1 I Zn . mix , /n wn V1
x(l + cos和 +海瓦■] +cos瓦而*瓦而) 丿

(31)

(40)

for h.c.p. cluster.

The eigenvectors are of the same forms a동 those of f.c.c. 

cluster (Eqs. 35-38). However, the molecular functions 脚 
are quite different since the positions of s-orbitals are charac

teristic of each lattice.

Discussion

"&/)=( 点 1)L2 sin就쁘11/2

(32)
In infinite solid, Bloch functions which are periodic in k- 

space satisfy the relation,

i, 1=1, 2,…，Na
也a, r) (41)

The label P of the state is given similarly to a:

(33)

where I, m, k = 1, 2, NA

Then the final results of an eigenvalue problem for f.c.c. 

cluster of arbitrary size are given by:

where r, E and 孩 are a displacement in 

wave vector and a primitive translation 

space, respectively. The Bloch functions 

represented as a Fourier series

the real spece, a 

in the reciprocal 

can therefore be

印=跖+2血瞻7끄 1 +c。요謂1 +cos 爲
V꺼(方: 2니点, r) exp(ik-Rn) (42)

、/3 丄 M 丄 wn , Zn a
X(l + cos瓦有+cos瓦"1 +COS瓦至严瓦司)

(34)

d邱=i供,n） uB（j,彻）uA（i, I） 

where 晾，）=（ 瓦］）'" 細（崩뜨】

(35)

(36)

where N and Rn are the number of unit cell and the primitive 

translation in real lattice. The functiion 7) in the expan

sion is the Wannier function. With the tight-bonding model, 

the Wannier function am(r-Rn) can be approximated by the 

atomic orbital x(r-7?„). Taking only nearest neighbor interac

tion into account, one can show that11

&信）=e"+［x爲，:）［【/（/）一為M

8=3 —l)MM + g —DM+]
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■-—、 —> 一》 * —> ―» —* —* —* —+
+ £ exp(讷,兄)底(况盼)一阳一时］乂应一乩)而 

nearest ft qxneighbors )

If s-orbital is exclusively considered as an atomic function, 

the integrals in the sum on the right-hand side are equal. 

If a is the lattice constant, Eq.(43) can be written with further 

abbreviations,13

E，0)=E% + Cm + 4£(cos을知 cos을如

+ COS을 ky COS을 kz + COS을 kz COS을 kx) (44)

for f.c.c.;

E(^) = E«+Cm + 8Z cos을晨 cos을局 cos을也 (45)

for b.c.c., where

Cw = Jx^(r)Ly(r)-烈尸)h 石)必 (46)

Table 1. Convergence of f.c.c. Cluster Analytical Solution (in 

units of-t)

N
No. of 

atoms
Emm Egx Band Width

Fraction of 

surface atoms

3 27 -6.949747 2.949748 9.899495 .962963

4 64 -8.531153 3.295085 11.826238 .875000

5 125 -9.495190 3.495191 12.990381 .784000

6 216 -10.115506 3.621547 13.737054 .703704

7 343 -10.534652 3.706225 14.240876 .635569

8 512 -10.829783 3.765606 14.595389 .578125

9 729 -11.044850 3.808783 14.853633 .529492

10 1000 -11.206135 3.841121 15.047255 .488000

11 1331 -11.330048 3.865946 15.195994 .452292

12 1728 -11.427231 3.885407 15.312638 .421296

13 2197 -11.504813 3.900937 15.405750 .394174

14 2744 -11.567706 3.913525 15.481231 .370262

15 3375 — 11.619383 3.923865 15.543249 .349037

16 4096 -11.662351 3.932462 15.594814 .330078

17 4913 — 11.698456 3.939686 15.638142 .313047

18 5832 -11.729081 3.945812 15.674893 .297668

19 6859 -11.755279 3.951053 15.706332 .283715

20 8000 -11.777861 3.955570 15.733431 .271000

21 9261 -11.797463 3.959491 15.756954 .259367

22 10648 -11.814585 3962916 15.777501 .248685

23 12167 — 11.829628 3.965925 15.795552 .238843

24 13824 -11.842915 3.968582 15.811497 .229745

25 15625 -11.854708 3.970941 15.825649 .221312

26 17576 -11.865224 3.973044 15.838268 .213473

27 19683 -11.874639 3.974927 15.849567 .206168

28 21952 -11.883102 3.976620 15.859723 .199344

29 24389 -11.890738 3.978147 15.868885 .192956

30 27000 -11.897649 3.979530 15.877179 .186963

40 64000 -11.941402 3.988280 15.929682 .142625

50 125000 -11.962103 3.992421 15.954523 .115264

60 216000 -11.973499 3.994700 15.968199 .096704

70 343000 -11.980434 3.996087 15.976521 .083289

80 512000 -11.984965 3.996993 15.981958 .073141

90 729000 -11.988086 3.997617 15.985704 .065196

100 1000000 -11.990328 3.998066 15.988394 .058808

Table 2. Convergence of b.c.c. Cluster Analytical Solution (in 

units of-t)

No. of Emtn Emax Band Width
Fraction of 

surface atoms
N

atoms

3 27 -4.121320 4.121321 8.242641 .962963

4 64 -5.295085 5.295085 10.590170 .875000

5 125 -6.031089 6.031089 12.062178 .784000

6 216 -6.511631 6.511631 13.023262 .703704

7 343 -6.839134 6.839134 13.678267 .635569

8 512 -7.071013 7.071013 14.142026 .578125

9 729 -7.240624 7.240625 14.481249 .529492

10 1000 -7.368163 7.368163 14.736326 .488000

11 1331 — 7.466345 7.466345 14932689 .452292

12 1728 -7.543464 7.543464 15.086928 ,421296

13 2197 -7.605101 7.605101 15.210202 .394174

14 2744 -7.655116 7.655116 15.310232 .370262

15 3375 -7.696242 7.696242 15.392485 .349037

16 4096 -7.730459 7.730459 15.460918 .330078

17 4913 -7.759225 7.759225 15.518450 .313047

18 5832 -7.783636 7.783636 15.567272 .297668

19 6859 -7.804525 7.804526 15.609051 .283715

20 8000 -7.822538 7.822538 15.645076 .271000

21 9261 -7.838177 7.838177 15.676354 .259367

22 10648 -7.851841 7.851841 15.703682 .248685

23 12167 -7.863848 7.863849 15.727697 .238843

24 13824 -7.874456 7.874456 15.748912 .229745

25 15625 -7.883873 7.883873 15.767746 .221312

26 17576 -7.892270 7.892270 15.784541 .213473

27 19683 -7.899790 7.899790 15.799581 .206168

28 21952 -7.906551 7.906551 15.813101 .199344

29 24389 -7.912650 7.912650 15.825300 .192956

30 27000 -7.918172 7.918172 15.836344 .186963

40 64000 — 7.953139 7.953139 15.906278 .142625

50 125000 -7.969689 7.969689 15.939378 .115264

60 216000 -7.978803 7.978803 15.957606 .096704

70 343000 一 7.984349 7.984349 15.968698 .083289

80 512000 -7.987973 7.987973 15.975946 .073141

90 729000 -7.990470 7.990470 15.980940 .065196

100 1000000 -7.992263 7.992263 15,984526 .058808

lattice, computed by Eq.(44L

and the wave vector k is limited to Brillouin zone.

The analytic solutions of finite clusters(Table 1, 2) conver-
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Hgure 4. S-type band structure of the body centered cubic (b.c. 

c.) lattice, computed by Eq.(45).

ge to the results of Eqs.(44) and (45) of infinite lattice cases 

(Figure 3, 4), in the minimum and maximum of the energy 

(band width).

Now, the last but the most important question to be ans

wered is: how well the analytic solution based on the wave

rage configuration**  does represent the real lattice ? Since 

the density of states, especially the local one, depends on 

both the set of eigenvalues and eigenvectors, it would be 

logical to compare those(DOS and LDOS) from the numerical 

solution of the lattice of the configuration I of Figure 2, with 

those from the analytical solution obtained by the Maverage" 

configuration, for the moderate size of the cluster. The DOS 

and LDOS at the atom with index a is given by14

p(E) = 2&E一 印)(for DOS) (47)
p

Pa(£) = S I da(i I2 5(£-e0) (for LDOS) (48) 

p

For finite 아usters, one can replace the delta function by 

a Gaussian of the width parameter o. Thus Eqs.(47) and 

(48) become

p《E) = (27r/)T%exp[ —(E 一切)/2旳(for DOS) (49) 
p

区(E)=(2爪旳 T% I 12 expr-(£-Ep)/2o2] (for LDOS)
g

(50)

The and o=0.075 (in units of t) are taken in the 

present work.

Figure 5 compares the DOS's obtained by numerical solu

tion with the analytical one, for the f.c.c. cluster of 5X5X5, 

7X7X5 and 9X9X5 respectively. In the case of 100X100X 

100 cluster, the energy eigenvalues derived from Eq.(44) are 

used instead of the numerical solutions, i.e. the Brillouin 

zone is divided into 106 segments, and at center of each seg

ment &(k) of Eq.(44) is computed. For small clusters (up 

to 9X9X5 atoms), DOS's of the analytical solution agree wi比 
those of the numerical one. Since, for those clusters, the 

fractions of the surface atoms are relatively large (more than 

50%), DOS may not be too different from LDOS at a surface 

atom. Consequently, one may interpret the close agreement

(in units of -t)
120-

100-

150-

•10 -B -6 Y OErEt 2
gt” (in units of -t)

120-

30-
Energy (in units of 나)

io -8 -e -4 -2 0 ErEf 2 4
grgy (in unita of -t)

Figure 5. Density of states (DOS) of the face centered cubic 

(f.c.c.) clusters of (a) 5X5X5, (b) 7X7X5, (c) 9X9X5, (d) 100X 

100 X100, atoms respectively. The solid line denotes the DOS 

from the analytical solution and the dashed line corresponds 

to the one from the numerical solutions for (a), (b) and (c), and 

Bloch sum for (d). E； and E,- are Fermi levels.
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Energy (in units of 나)

Figure 6. The local density of states (LDOS) of 9X9X5 f.c.c. cluster at (a) (1, 1, 1), (b) (5, 1, 1), (c) (5, 5, 1), (d) (5, 5, 2) and 

(e) (5, 5, 3). The position index is defined by Eq.(7) of the text. The solid line denotes the analytical solution and the dashed line 

corresponds to the numerical solution (See text).

between DOS's as the agreement between LDOS at a surface 

간om. On the other hand for a large cluster of 100X100X 

100, where the fraction of surface atoms is mere 6 percent 

DOS from the analytical solution poorly copies the result 

from the Bloch sum, especially in the region of near and 

above the Fermi level. It means that the analytical s이ution 

is inadequate to describe the bulk properties which may de

pend sensitively on the DOS profile near the Fermi level.

The above observation of Figure 5 also is consistent with 

the fact, which Figure 6 will 아아)。rtly, that the LDOS 

from the analytical solution agrees with that from the numer

ical one better at surface than inside.

The advantage of the present work lies in the simplicity 

of calculation: the computation of eigenvalues for 106-atomic 

duster, which is nearly impossible by the numerical method, 

requires only a few hours in PC. LDOS's (see Figure 6) from 

the analytic 옹이ution shows relatively good fit for that from 

the numerical s이ution at the region of the surface.

The work, however, has problems too. First, 하屿 analytical

ly-obtained DOS agrees fairly well, for the cluster of atoms 

with singly occupied s-orbital, with numerical one nearly up 

to Fermi level, but doesn*t  around above Fermi level (see 

Figure 5). Therefore the solution may not be useful for trea

ting bulk properties (cohesive energy, work function etc) and 

any effects associated with Fermi surface. Secondly, because 

the cubium cluster model used here is based on (1, 0, 0)
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Figure 7. (a) The density of states (DOS) and (b) the local density of states (LDOS) at (6, 6, 1), of 11X11X11 f.c.c. cluster, com 

puted with Eqs.(34) and (35) (See text.). '

Figure 9. (a) DOS and (b) LDOS at (6, 6, 1), of 11X11X11 h.c.p. cluster, computed with Eqs.(35) and (40) (See text).

Miller index plane, it is not feasible to represent diverse 

surface other than this plane.

With the analytic cluster solution, The density of states 

(DOS) and local density of states (LDOS) for the 시usters 

of 1331 atoms, which is a 11X11X11 array, have been com

puted. The DOS's of f.c.c. (Figure 7a) and h.c.p. (Figure 9a) 

seem to be unsymmetric; the minimum energy is farther 

apart than the maximum one from the origin, but the states 

are more densely distributed at high energy than at low 

energy. But the DOS of b.c.c. (Figure 8a) appears to be sym

metric to the origin. In the b.c.c. lattice, the present model 

is rather inadequate since the nearest neighbors don't exist 

in a layer and so the off-diagonal elements of the matrix 

are far apart from the diagonal elements. The LDOS (Figure 

7, 9) of each lattice has a general profile which is qualitati

vely similar to the DOS of itself, but the deviation, of each 

LDOS computed with analytic solution, from the one with 

numerical means becomes greater from surface to the inside 

of the bulk. Therefore, the analytic solution may be adequate 

for problems of adsorbate-substrate interactions, but may not 
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be so for bulk properties.
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Spin-lattice relaxation of methyl protons in 2,6-dichlorotoluene and N-methyl phthalimide, each dissolved in CDC13, 

has been studied at 34°C and the contribution from spin-rotation interaction to the relaxation process has been separa

ted from that due to dipole-dipole interactions among methyl protons. The results 아)ow that 하le spin-rotational 

contributions to the initial rate of relax가ion in 2,6-dichlorotoluene and N-methyl phthalimide amount to 18 and 31%, 

respectively, of the total relaxation rate at 34t. The method of separating the spin-rotational contribution from that 

of dipolar interactions adopted in this paper is based on the well known fact that in an A3 spin system such as 

methyl protons in liquid phase dipolar relaxation mechanism gives non-exponential decay of the ^-component of 

total magnetization of protons while the random field fluctuation such as spin-rotational mechanism causes exponential 

decay.

Introduction

It is nowadays a well-established fact that the study of 

nuclear magnetic relaxation can provide valuable informa

tions regarding inter- and intramolecular interactions and 

their dynamical characters in bulk materials.1 Relaxation of 

nuclear spins in a molecule is known to be caused by random

ly fluctuating magnetic fields produced at the nuclear sites 

by various inter- and intramolecular interactions. Among 

these the most pronounced are (inter- and/or intramolecular) 

nuclear magnetic dipole-dipole interactions, spin-rotation in

teractions, nuclear electric quadrupole-electric field gradient 

interactions, chemical shift anisotropy interactions, scalar 

couplings of the first and second kind, and interactions due 

to the presence of paramagnetic molecular species.2

For protons in small organic molecules dissolved in a deu

terated solvent such as CDC1& it is known that only inter- 

and intramolecular dipole-dipole interactions and the spin-ro

tation interactions are the two major relaxation mechanisms 

to be considered and the contributions from other causes 

can safely be ignored.34 The dipolar interactions are usually 

a dominating factor; however, if the molecule is of highly 

symmetrical shape and can undergo easy rotational motions 

in bulk phase, the spin-rotational contribution may be appre

ciable in magnitude.5 Such seems to be the ca동e also for 

protons located on a methyl group which can undergo rapid 

internal rotation about its own axis of symmetry with respect 

to the molecular frame.

Since dipolar and spin-rotational contributions are known 

to provide different kinds of molecular motional informations 

between them, it is of great importance to distinguish one 

from the other.6 Many NMR investigators have probably had 

more or less frustrating experiences that for protons on a 

methyl group they did not have an easy and legitimate 

means at hand by which they could separate dipolar contri

butions from those due to spin-rotation interactions in their


