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Mean Residual Life Times

Sang-Bock Lee* and Byung-Gu Park**

ABSTRACT

A different approach to the evaluation of mean residual life function under the
random censorship model is presented. For small sample sizes, the performances
between the proposed estimator and other estimators for mean residual life function

are compared in terms of bias and mean square error via a Monte Carlo study.

1. Introduction and Notations

Let z;,---,zn be independent and identically distributed random survival
times with a common distribution function F(z) on [0,00) with F(0) = 0 and
mean g. Let Sp(z) = 1 — F(z) denote the survival function. Then the mean
residual life function (MRLF) at age z is defined as

e(r) = E[X -z | X >z]
_ [ Sp(u)du

SF(.’E) (1)

and e(x) = 0 whenever Sp(z) = 0. Yang(1978) proposed an estimator e(z) of
MRLF e(z) as

@) = [Sa(@)™ [ " Su(v) dv )

for v < X(;,), and showed that &{z) is asymptotically unbiased and uniformly strong

consistent. Also she proved that the empirical process

n'/? { %) - e(2) } (3)
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fora <M < Tp =inf{ 2| F(z) =1} < oo, converges weakly to a zero mean
Gaussian process. Burke, Csorgo and Horvath (1981) obtained strong approxima-
tions of the empirical process in (3) without assuming Tr < co. But they pointed

out that their results are unsatisfied under the random censorship model.

Now, let Y7,---,Y, be random censoring times with a distribution function

G(y). Let Sg(y) = 1 — G(y). Define Z; = min{X,,Y;} and é;, = I[ X; < Y; ] for
¢t =1,---,n. Under the random censorship model X; is assumed to be independent

of Y; for each i,
S(z) = P(Z > z) = Sp(x)Sg(z) (4)

for any F' and G. In genral, X and Y are not directly observable, but one observes
only (Z1,61),--+,(Z,,0,). The problem of estimating Sp and some functionals of
S are based on the data (Z1,81), -, (Zn, 6n)-

Let the truncated MRLF ep(z) be defined by

I Sp(u) du
em(z) = T o) (5)
where 2 < M < Ty = inf{z | H(z) = 1}. Then, the estimator ey (z) of a
truncated MRLF e () is defined by
M o~ —
eule) = [ Setu)du / Se(o) (6)

where §F is some estimator of Sp =1 — F.

Yang(1977) proposed estimators XM (z) and €A (z) of MRLF by using the
Kaplan-Meier estimator and the Nelson-Aalen estimator. She also studied strong

consistency and weak convergency of the estimators.

In this paper, we propose an estimator €5 (z) of MRLF e (z) as using the
pap prop M g

Susarla—Van Ryzin(1980) estimator S l*?:v(x) of survival function Sg, where

) . (1-6;)
~ n—k n—i+2 J
58 (2) = | ] ™
) 1+ 1
{5:Z2¢;y<x}
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2. Consistency of €5} (z)

First, we consider the strong consistency of €3} (z). From now on, we denote

sup{[f(u)l |z Sw <M} by |flly

for any function f on (z, M), and denote some constants as c;,cz,-+-. From

Section 1, one can get that

37 (2) — em(2)| (8)
= [57/(2)Sp(2)]™!

M . M
X ISF(CIJ)/ ngdu—ng(m)/ SF du|

—~ M o~
= 85V ()Sr(2))" [Se(a) / 38V — Sr]du
+ [Sk( CL’)—S / Sp(x du|
< [B8V(2) (Sr(a) / 185 () — S| du
+ 1Se(z) - 85 (2)] / Spdu)
o~ ’ M
< [58Y(2)Se()) (ko) / (52 W — 555" du
+ |SF ’/ Squ}

< ofn 1/3]{MSG1(M WSn = Sl + MISaWa — SGH Iy,

+ 18p(z) - 88V (2)] / Sp du)

< o[n/BI+1II+III}.

The 2™? inequality follows by a triangular inequality after adding and substract-
ing the integral sz S5'$ndu, and from the condition (A3) of Surala and Van
Ryzin(1980) one can get 3"¢ inequality.

Now one can observe that

- o]t
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by the law of iterated logarithm (Susarla and Van Ryzin(1980)). to deal with II, it

can be observed that,

IT < i M||S5*Sn(ln Wy, — In SZ1)||m (10)
+ 2 M||S5 Sa(ln W, — In S51)?||

since S, < 1. A rate for strong convergence of strong II to zero can be obtained by
three conditions of Susarla and Van Ryzin(1980);

(C1) 352,42 / n*S*(M) < oo, for positive constants a, and for 0 < 2¢ < 1 and
0<28<1<p,

(C2) =22 . aP [ S?(M)nPP < oo,

n=1"n

(C3) lim n*S(M) > 0.
They obtained a rate for
M||Sg18x(In W, —1InSg1)||ly — 0 a.s., (11)

as o Sg'(M)max(a;?, logn / n(172%)/2 ) under the above conditions (C1), (C2)
and (C3). Finally, they also found that

III = o(logn / n~%/?). , (12)
Combining (9), (10), (11) and (12), one can get the following theorem without proof.

Theorem 2.1 (Strong convergency of ep(z) )
Suppose that the conditions (C1), (C2) and (C3) are satisfied. Then for any
z€[0, M),

el (z) — em(z) = o n**SSUM)M

-max(a;1,logn / n0 729/ ) g5,
where M <Ty = inf{z | H(z) = 1 }.

Remark 2.1. Examples satisfying conditions (C1), (C2) and (C3) are given
in Susarla and Van Ryzin(1980).
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3. Comparisons of Estimators for ey (z)

In this section we compare the performances of three estimators
ekM(z), &3 (z) and e}A(z) for em(z) in terms of bias and mean square er-
ror(MSE) via a Monte Carlo study. The random censorship model was adopted:
X,1,--,X, are the true survival times and Yj,---,Y, are independent and iden-
tically distributed with absolutely continuous distributions F', G, respectively, as

those of the first sectiomn.

Various combinations of two survival distributions Sg’s, exponential( Ezp)
and Weibull( Weib), and two censoring distributions Sg’s, exponential and uni-
form( Unif), have been simulated with different censoring patterns (10%, 30%) and
different sample sizes ( n = 30, 50, 100 ).

The given z’s as conditionals considered in simulation were obtained by inverse
of true survival function Sp, i.e., ¢ = Sz'(1), SF'(.9),---,SF (.1).

Replication was done 500 times. For each values of z, the mean, bias, and
MSE of ej(z)’s were computed. The standard error(s.e.) was also obtained for

each MSE. We can summarize the design of simulation as the following Table 1.

Table 1. Design of Simulations

Weib(1.15,2)/Exzp(A)
100

Distribution Sample Censoring Inverse
Survival/Censoring size Rate Quentile
n z=S5"Yz)
: 1.0
Ezp(1)/Ezp()) 30 9
10% 8
Ezp(1)/Unif(\) T
50 6
. .5
30% 4
3
2
1
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Tables 2 (a)-(c) summarize the results of this simulation for z = Sp(.7), Sr(.5)

and Sp(.4), and sample sizes n=30, 50, and 100 with different censoring proportions
(about 10%, 30%).

From Table 3.2, one can observe the following facts:

(1) As censoring proportion increases, or equivalently, as inverse quantile of survival
function increases, MSE and bias become increased.

(2) Three estimators for MLRF tend to underestimate as either of censoring propo-
tion is increased or inverse quantile of survival function Sg increased.

(3) The estimator €3 (v) may slightly underestimate and the estimator et (x)
may be slightly overestimated.

(4) As sample increases, the estimator €y (z) has a tendency to have positive

bias near at right.

A change of censoring distribution from exponential to uniform, or a change of

true distribution from exponential to Weibull gives no essential change in results.



Table 2. Comparisons of MSE’s for e£M(z),

Mean Residual Life Times

85V (z) and EVA(z)

(a)-1  When Sp(z) = Ezp(1), Sg(z) = Exp(z) A= .111
( 10% censoring )
x(3(x))

n  Estimator 357(.7) .693(.5) .916(.4)
MEAN BIAS MSE MEAN BIAS MSE MEAN BIAS MSE
KMEl 977 -.023 .056 972 -.028 .090 965 -.035 125
30 SVE2 .963 -.037 .052 952 -.048 .082 951 -.049 112
NAE3 1.038 .038 068 1.046 046 110 1.07 .047 152
KME .998 " -.002 .034 997 -.003 .0438 .89 -.011 .063
50 SVE 987 -.013 .029 .981 -.019 045 972 -.028 .087
NAE 1.046 046 .041 1.054 .054 .058 1.055 -.055 .074
KME 1.001 .001 .017 1.006 .006 .025 1.034 034 .032
100 SVE 997 -.003 017 996 004 .024 992 -.008 030
NAE 1032 032 020  1.043 043 029  1.046 046 038

(a)-2 A= 429 ( 30 % censoring ).
x(8(x))

n Estimator .357(.7) .693(.5) .916(.4)
MEAN BIAS MSE MEAN BIAS MSE MEAN BIAS MSE
KME 918 -.082 .088 871 -.129 134 .843 -.157 171
30 SVE 882 -.118 .065 844 -.156 095 836 -.164 .120
NAE 976 -.032 .083 926 -.074 138 901 -.099 177
KME .835 -.064 .050 811 ' ..089 .081 835 -.113 113
50 SVE .903 T -.097 .044 878 -.122 .069 " 856 -.143 .091
NAE 976 -.024 .053 .960 -.040 087 .939 -.061 120
KME 961 -.038 027 .948 -.052 .043 932 -.068 .060
100 SVE 935 -.065 023 918 -.082 .036 901 -.099 .048
NAE .990 -.010 .029 983 -.014 .046 973 -.027 .063

>S5V

1) KME = e (2)

2) SVE = €y

(z)

3) NAE = epi(z)

17
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Table 2 ( continued )

(b)-1  When Sp(z) = Exp(1), Sa(z) =Unif(A) X =99
( 10% censoring )
X(S(x))

n Estimator 357(.7) .693(.5) .916(.4)
MEAN BIAS MSE MEAN BIAS MSE MEAN BIAS MSE
KMEl 968 -.032 .049 961 -.039 082 950 -.05¢ .010
30 S\/Ey2 .954 -.046 .046 .947 -.053 074 937 -.063 .091
NAE3 1.025 .025 .056 1.030 .030 .095 1.026 .026 121
KME 990 -.010 034 985 -.015 .039 .980 - -.020 .042
50 SVE 977 -.0.23 .031 970 -.030 045 963 -.037 .062
NAE 1.034 .034 .039 1.040 .040 060 1.042 .042 .084
KME 1.005 .005 017 1.005 005 017 1.005 .005 .031
100 SVE 993 .007 .016 .994 -.006 .016 991 .001 .033
NAE 1.028 .028 .019 1.038 -.038 .019 1.041 041 .036

(b)-2 A = 3.3 ( 30% censoring ).
x(5(x))

n Estimator .357(.7) .693(.5) 916(.4)
MEAN BIAS MSE MEAN BIAS MSE MEAN BIAS  MSE
KME 338 -.162 071 761 -.239 117 694 -.308 .160
30 SVE 846 -.154 060  .788  -212 093 744 -256  .115
NAE 869 -.130 .064 794 -.206 .106 725 -.275 .146
KME 857 -.143 049 300 -.200 078 751 -.249 .106
50 SVE 852 -.148 046 309 -.191 .068 773 -.227 .088
NAE .881 -.119 044 827 -.173 069 .780 -.220 085
KME 386 -.113 .026 843 -.157 .044 .805 -.195 061
100 SVE 896 -.110 024  .852  -.148  .038  .822  -.179 051
NAE 901 099 044 861  -.139  .040 824 176  .055

- ~K ~ -
1) KME = e8M(z)  2sve=e5 (z) ) NaE = e} (2)
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Table 2 ( continued )

(c))1  When Sp(z) = Weib(1.15,2), Sg(z) = Ezp(A) X = .14
( 10% censoring )

x(8(x))
n  Estimator .517(.7) .721(.5) .829(.4)
MEAN  BIAS MSE MEAN  BIAS MSE MEAN  BIAS MSE

KME1 433 -.004 005 .363 -.002 007 .333 -.002 .009

30 SVE2 430 -.007 .007 .360 -.006 .007 330 -.005 .008
NAE.3 452 .015 .006 .385 019 .008 357 .022 011

KME 438 001 003 .368 -.002 .004 337 .002 .004

50 SVE 436 -.001 .003 .366 .000 004 .335 .000 0035
NAE 452 015 .004 .384 018 005 .385 .018 .006

KME 438 .001 002 .363 -.001 .003 340 .005 002

100 SVE 437 .000 .002 .366 -000 .002 .339 .004 .002
NAE 446 .0038 .002 .380 014 .002 351 015 .063

()2 A = .49 ( 30% censoring ).

x(S(x))
n Estimator B17(.7) .721(.5) .829(.4)
MEAN BIAS MSE MEAN BIAS MSE MEAN BIAS MSE

KME 426 -.011 .008 .35¢ -.006 .010 334 -.003 .013
30 SVE 415 -.016 .007 .346 -.019 .009 322 -.014 010
NAE 456 019 .009 .383 017 012 359 .022 015
KME 432 -.005 .005 .362 -.004 .006 .330 -.005 .007
50 SVE .413 -.013 .004 .353 -.013 .0086 322 -.014 .007
NAE 448 011 .005 .3381 015 .007 .351 014 .009
KME 436 -.001 .002 .367 -.001 .003 .336 .001 .003
100 SVE .431 -.006 .002 .361 -.005 .003 .330 -.0056 .003
NAE 447 -.009 .002 379 .013 .003 342 .007 .004

1) KMBE= é\IA‘/IM(w) 2) SVE = E}S\',[v(x) 3) NAE = E%A(x)
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4. An Example

The data used for an illustration are cited from Appendix 1 of Kalbfleisch and
Prentice(1980). Approximately 30% of the survival times are censored owing pri-
marily to patients surviving to the time of analysis.

follow-up because the patient moved or transferred to an institution not participat-

Some patients were lost to

ing in the study, though these cases were relatively rare.

Figure 1 shows the data from a clinical trail in the treatment of carcimona

of the orthpharynx. From Figure 2, one can see the curves of estimated MRLF’s,

e., esM(x), €5/ (z) and efA(z).
1 G666 1 477 1 308 726 1 310
0 1039 0 932 0 1095 731 1 .238
0 593 1 448 1 553 532 0 154
1 369 1 107 0 854 513 0 914
1 105 0 600 1 317 407 1 346
1 518 1 395 1 603 324 L 275
0 546 1 112 0 132 209 1 208
1 174 1 291 0 723 498 1 213
1 33 1 128
* 1 and O are descrived uncensored and censored, respectively.

Figure 1. A Clinical Trial in the Treatment of Carcimona

Figure 2.

of the Orthpharynx ( Female 42 ).
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