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Bayesian Estimation for the Weibull Model

under the Progressively Censoring Scheme

In Suk Lee*, Kil Ho Cho* and Hyeon Suk Chai *

ABSTRACT

The maximum likelihood estimators and Bayes estimators of the parameters
and reliability function for the two-parameter Weibull distribution under the type-
II progressively censoring schemes are derived when a shape parameter is known
and unknown, respectively. Efficiencies for above estimators are also compared each
other in terms of the mean square errors, and Bayes risk sensitivities of the Bayes

estimators are investigated.

1. Introduction

The two-parameter Weibull distribution has been widely used in the field of
the reliability and life testing.

The probability density function (p.d.f.) of the two-parameter Weibull distri-

bution is given by

y

Fz]8,7) = %wlexp(-%), 0 <z <oo, 8,y > 0, (1.1)

where 6 and « are referred to as scale and shape parameters, respectively, and

denoted by W(#8,~).

Let the reliability function denote the probability of survival until the mission
time to. Then the reliability function R(to | 8,v) of W(8,7) is

R(to | 8,7) = exp(—t3/6), 0 < to <oo, 8,7v > 0. (1.2)
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Hart and Moore(1965) obtained the maximum likelihood estimator(M.L.E.)
of a scale parameter in the two-parameter Weibull distribution under the failure-
censored case. The M.L.E. and uniformly minimum variance unbiased estimator
of the reliability function for the two-parameter Weibull distribution with a known
shape parameter have been proposed by Basu(1964). Cohen(1965) considered the
M.L.E’s of both scale and shape parameters. In the Bayesian estimation of the
parameters and reliability function for the two-parameter Weibull distribution in
the case where a scale parameter is a random variable, Soland(1968) considered
the gamma prior distribution and Canovos and Tsokos(1973) used the exponential,
inverted gamma and uniform prior distributions for a scale parameter. In the case
where both scale and shape parameters are random variables, the Bayes estima-
tors of the parameters and reliability function for W(6, ) have been considered by
Bury(1972), Canovos and Tsokos(1973) and Papadopulos and Tsokos(1975). Pro-
gressively censoring schemes are often used in clinical trials and life testing problems
with a view to monitoring the experiment from the start with the objective of a
possible early termination of the experiment depending on the cumulative at its var-
ious steps. For the progressively censoring scheme, Cohen(1965) studied M.L.E.’s
of both scale and shape parameters, Gibbson and Vanse(1983) obtained M.L.E. and
least squares median ranks estimator, and Caciari and Montanari(1987) considered

the confidence limits for parameters.

In this paper, the M.L.E.’s and Bayes estimators of the parameters and reli-
ability function for the two-parameter Weibull distribution under the type-1I pro-
gressively censoring schemes are derived when a shape parameter is known and
unknown, respectively. Efficiencies for above estimators are also compared each
other in terms of the mean square errors(M.S.E.), and the Bayes risk sensitivities

of the Bayes estimators are investigated.

In Section 2, for the case of a shape parameter known, we derive the M.L.E. of
the parameter and reliability function, the generalized maximum likelihood estima-
tor(G.M.L.E.), and the Bayes estimators of the parameter and reliability function
derived under the noninformative and inverted gamma prior distribution. Also, for
the case of a shape parameter unknown, the M.L.E. of the parameters and reliabil-
ity function are obtained and the Bayes estimators of the parameters and reliability

function are derived under the inverted gamma and uniform prior distribution for
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a scale parameter, while the independent uniform prior distribution for a shape

parameter.

In Section 3, for the case of a shape parameter known, we obtain the Bayes risk
of the Bayes estimator when the true prior distribution is not the inverted gamma

prior distribution .

In Section 4, through the Monte Calro simulation study, we compare the Bayes
estimators with the M.L.E.’s in terms of the M.S.E.’s for a shape parameter known

and unknown, respectively.

2. Estimation of Parameters and Reliability Function

under the Type-II Progressively Censored Case

Let N denote the total sample size and n the number of sample specimens
which result in completely determined life spans. Suppose that censoring occurs
progressively in k-stage at time T; such that T; > T, 3,4 = 1,---,k, and that
at the 7th stages of censoring r; sample specimens selected randomly from the
survivors at time 7T} are removed(censored) from further observation. Therefore, 1t
follows that

N =n+ Zri.
i=1

The likelihood function under the type-II progressively censored sample is given by
L = U8,ylx) = [[(nifei)l - F)]™)
=1

c(’y/&)"(Hz?ﬂl)exp [— Z(l + ri):cgjl , (2.1)

i=1

Il

where n} = N — Yiir — i + 1.

13

We use the squared error loss functions for 8, v and the reliability function

R(to | 8,7) given by as follows;

LB, 6*) = (6 —6%), (2.2)
L(v, 7)) = (v =), (2.3)
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and

2
)

L(R(to | 6,7). R*(to]6,7) = (R(to|6,7) — R*(to6,7)) (2.4)

where 6%, v* and R*(to | 6,v) are the estimators of 8, v and R(to | ,7), respec-
tively.

Theorem 1. When ~ is known, the M.L.E.’s of 6 and the reliability function
R(to | 8,7) under the type-II progressively censoring scheme are given by

n

§ = %;(1 +ri)z) (2.5)
and

R(ts) = exp(~t3/6), (2.6)
respectively.

Now, we consider the Bayes estimators and G.M.L.E.’s for the parameter and

reliability function.

Theorem 2. When 7 is known, the Bayes estimators of the parameter and
reliability function under the type-II progressively censored case are as follows;

(i) For the noninformative prior distribution for 8,

S
gr = —— 2.7
! n—-1" (2.7)

and

1

Rf = — it
! (14+t3/Sn)

(2.8)

(ii) For the inverted gamma prior distribution for 6,

Sn +/l
Y = 2.9
02 n+uv— 1 b) ( )
and
1
R; (2.10)

T At Sa )
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where,

= Z(l + 7))z

Proof. (i) The noninformative prior distribution for 6 is

1
g1(0) o 5, 6 > 0,
and the joint distribution of § and z = (21,-++,2n) is

h,) = ev([[o7 e =) 0m

Thus, the posterior distribution of 8 is

_ h6,z) _ Spexp(=S./6)
e T

(2.11)

Therefore, under thé squared errpr loss functions (2.2) and (2.4), the Bayes estima-

tor 87 of 4 is

D
-
il

/wﬁw[nw

5™ exp(—S,/0)
/0 ()8! L df

i

b

n—l

and the Bayes estimator R of R(to | 6,7) is

R = Elexp(~]/6) | 2]
- / exp(—]/6)n(6 | £)d8
~ / exp<_tg/e)—————53§’(‘§§;ﬁ';/ Las
1

(1+15/Sa)"

(ii) Similarly, we can prove (ii).
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Corollary. When v is known, the G.M.L.E.’s of the parameter and reliability
function under the type-II progressively censored case are given by as follows;

(i) For the noninformative prior distribution for 6,

j— Sn
ST o+l

*

and
R} = exp(~t]/65) .

(ii) For the inverted gamma prior distribution for 6,

n+v+1’

*
s =

and
R; = oxp(~53/6)

Theorem 3. When v is unknown, the M.L.E.’s of the parameters and reli-
ability function under the type-II progressively censored case become the solutions

6 and 7 of the equations

Z:I:ln(l'*‘”)m?h}xi _ i = }-Zlnmi,
Sim (L +roz! 7 "
_ 1 5
g = = 1+r)z],
n;( Triess
and
R(ty) = exp(—tJ/8),

respectively.

Now, we consider the Bayes estimators for the parameters and reliabilty func-

tion.
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Theorem 4. When « is unknown, the Bayes estimators of the parameters
and reliability function under the type-II progressively censored case are obtained
by as follows;

(i) For the inverted gamma prior distribution for § and independent uniform prior

distribution for ~,

o = o Timye? ™ /(Sn +u)"+" 'dy
(n+v-1) f'y”l_[l 1277 /(S +,u)n+"d7

W ity | WEEX 1/(5n+/t)"+"dv

Sy Ty d ™ /(Sn+ w)"dy

and ) , .
fv"HI'_lw’“ /(S +ptty) dy
P 2l (S + w)"dy

where, 0 < 6§ < o0, a < 7y < b.

®¥
RY" =

(i1) For both the uniform prior distribution for € and 7,

o _ LTIl /SO = 2,50 /800
S el /S e(n - 1, S, /8)dy

e L L /S0~ 1, S/
fa-('YnHi:]x? 1/571 )Fc(n_ 1,5n/8)dy

and

LT T (Sa 4 1) T = 1, (Sa + 1)/ 6)dy
STyl /SATH0(n ~ 1,5 /8)dy

0 < 6§ <6, a<~y<b,

*k
R,

where, T'°(a,c) is the complement of the incomplete gamma function defined by

M(a,0) = [ v ep(-p)dy = T(0)=T(a,z)
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3. Robustness of the Bayes Estimator

An important consideration in the Bayesian analysis concerns the sensitivity
of the performance of the Bayes estimator derived under the assumed prior distri-

bution.

When the assumed prior distribution is the inverted gamma distribution and
the true prior distribution is not the inverted gamma prior distribution, we obtain

the sensitivity for the Bayes estimator of 6.

Theorem 5. The Bayes risk’s of the Bayes estimator and M.L.E. of 6 follow
as;
(i) When the true prior distribution is the uniform distribution, .the Bayes risk of

the the Bayes estimator 63 of 6 is

b? b 2
r@(0,b), 6;) = ———T) + __”__7 o
n+v—-1) (n+v-—1)
and that of the M.L.E. 8 is ,
~ b2
(U0, D), 0) = ——=T; .
7( ( ) ) 3n2 3
(ii)) When the true prior distribution is the gamma distribution, the Bayes risk of
the Bayes estimator 63 of 6 1s

2

r(g(a, B), 63) = (%Tl + m?;%)_zg% + (—nﬁ"ﬁ?‘ ’
and that of the M.L.E. of 8 is
(ol B) = 2T
where
n n n 2
T = (ntv=12=2m+v-1)> (1+r)+Y (1+r)" + (Z(Hm)) ,
i=1 =1 i=1

n

T, = Y (1+47r)—(n+v-1),

=1

mn n 2 T
n? —2n 2(1 +7) + (Z(‘l + 7‘i)) + Z(l +7r:)?.
=1 =1 =1

T3
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Proof. The Bayes risk of the Bayes estimator 5 of 8 is

r(U(0,b), 03) = E°[EX(6—65(6)’]
= E°[EX0® — 2605 + 657 )96)]
b2 b 2
— Ty + ,_./_‘_.__3{1“2 I S
3(n+v—1) (n+v-1) n+v-—1

and, the Bayes risk of the M.L.E. 8 of 6 is

-~

rU(0,), 8) = EC[EX6-816)]
= E°[EX(6* — 206 + 6°0)]
= b2 T

3n?

(ii) Similarly on (i).

The Bayes risk’s ratio of the Bayes estimator to the M.L.E. are formed as a

function of the mean of the true prior distribution.
4. Monte Carlo Simulation Study

In this section, for the type-II progressively censored case, we compare the
Bayes estimators with the M.L.E.’s in terms of the M.S.E.’s. We use 300 replications
to compute the M.S.E.’s and Bias’s of the estimators, the subroutine GGUBS of
the packages IMSL to generate uniform random numbers and take a transformation

X =(-0lnU )% to generate Weibull random numbers.

For the integration, we use the Simpson’s composite rule. We obtain the
M.L.E’s of the parameters and reliability function using the Newton-Raphson
method.

The M.S.E.’s and Bias’s of the estimators are computed for the mission time
to(t, : R(to) = 0.1 (0.23 0.9), sample size (N=30,50,80,100), censoring rates(10%
, 20% , 30% at each stage), 6 = 0.5(0.5)1.5 and v = 0.35, when v is known.
The M.S.E.’s and Bias’s of the estimators are computed for the mission time #o(t, :
R(to) = 0.1 (0.2) 0.9), sample size (N=16,20,28), censoring rates(10% , 20% at each
stage), 6 = (0.5,1.0)and v = (0.35, 1.0, 1.35), when ~ is unknown.
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There are some parts of the simulation results from Table 1 to Table 4. The rest
are available based on request. When = is known, the M.L.E.’s for 6 and R(to | 8,7)
are denoted by § and ]A%,respectively. The Bayes estimators and G.M.L.E.’s for § and
R(to | 8,~) under the noninformative prior distribution are denoted by 6}, R and
6%, R}, respectively. The Bayes estimators and G.M.L.E.s for 6 and R(t, | 6,7)
under the inverted gamma prior distribution are denoted by 63, R; and 6}, Rj,
respectively. When + is unknown, the M.L.E.’s for 6, and R(t; | 6,7) are denoted
by 8, ¥ and R, respectively. The Bayes estimators for 6, v and R(tq | 6,~) under
the inverted gamma prior distribution for § and the uniform prior distribution for
~ are denoted by 6;*, vi* and R}*, respectively. The Bayes estimators for §, v and

R(ty | 8,+) under both the uniform prior distribution for § and v are denoted by

* ¥

3% 713
uniform distribution, we plot the Bayes risk’s ratio of the Bayes estimator to the

and R3* respectively. In Figure 1, when the true prior distribution is the

M.L.E. against the mean of the true prior distribution. In Figure 2, when the true
prior distribution is the gamma distribution, we plot the Bayes risk’s ratio of the

Bayes estimator to the M.L.E. against the mean of the true prior distribution. °

(I) Table 1 and Table 2 represent the following facts:

1) For the noninformative prior distribution, the Bayes estimators 67, Rj of
6, R(to | 6,v) have smaller M.S.E. than the G M.L.E’s 65, R} and M.L.E.’s
g, E, respectively.

2) For the inverted gamma prior distribution, the Bayes estimators 63, R; of
6, R(ty | 6,7) have smaller M.S.E. than the GM.L.E’s 85, R; and M.L.E’s
§, E, respectively.

3) The M.S.E.’s decrease as n increases or a censoring rate decreases, respectively.

4) The estimators of the parameters and reliability function are almost underes-

timated.

(II) Table 3 and Table 4 represent the following facts:
1) Assample size increases, the Bayes estimators 67*, 65* of § have smaller M.S.E.
than the M.L.E. 6.
2) The Bayes estimators v;*, v3* of 7 have smaller M.S.E. than the M.L.E. 7.
3) The Bayes estimators R}*, R3* of R(to | 6,7) have smaller M.S.E. than the
M.L.E. R.
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(III) Figure 1 and Figure 2 represent the following facts.

33

1) When the true prior distribution is the uniform distribution, the Bayes esti-

mator has smaller Bayes risk than the M.L.E. when the mean of the true prior

distribution is more than about 3.

2) When thé true prior distribution is the gémma distribution, the Bayes estima-

tor has smaller Bayes risk than the M.L.E. when the mean of the true prior

distribution is less than about 1.

3) The Bayes estimator of a scale parameter in W(8,v) using the squared error

loss is robust in the sense that the Bayes risk’s ratio of the Bayes estimator to

the M.L.E. is invariant if the mean of the true prior distribution is invariant.

Table 1. Bias’s and MSE’s for Estimators of the Parameter

when 7 is Knowm (p,v) = (2,2), § =05
(1) 10% censoring case

7 : 0 0 o
N n  BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE
30 24 -.0677 0121 -.0489 0106 -.0850 .0142 -.0050 .0069 -.0417 .0077
50 40 -.0635 .0086 -.0523 .0076 -.0741 .0099 -0254 0050 -.0474 .0062
80 64 -.0657 0075 -.0588 .0068 -.0725 .0084 -0416 .0048 .-.0553 .0060
100 80 -.0655 .0066 -.0600 .0060 -.0709 .0073 -.0462 .0044 -.0571 .0054

(2) 30% censoring case

* * * - L4

g 1 03 3 4
N n BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE
30 12 -.1130 0246 -.0778 .0202 -.1428 .0305 0110 .0102 -.0571 .0108
50 20 -.1067 0184 -0860 .0152 -.1254 .0221 -.0302 0073 -.0710 .0104
80 32 -.1037 .0160 -.0809 .0139 -.1157 .0018 -.0551 .0080 -.0805 .0109
160 40 -.1101 .0161 -.1001 .0648 -.1196 .0181 -.0709 .0088 -.0908 .0117
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Table 2. Bias’s and MSE’s for Estimators of the Reliabilty
Function when v is Known (y,v) =(2,2), 6 = 0.5

(1) 10% censoring case

R : R(1]) R(13) "R(t}) R(t})

N n t0o R(t0) BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE

1.4950 .1 -.0277 0020  -.0179 0017 -.0348 .0023 .0412 .0013 -.0173 .0014

.2350 .3 -.0554 0077 -.0457 .0066 -.0690 .0092 .0469 .0045 -.0341 .0046

30 24 .0480 .5 -.0601 0091 -.0540 .00382 -.0747 0111 .0380 .0050 -.03638 .0050
0070 7 -.0469 0056  -.0444 .0053 -.0582 .0696 .0240 .00238 -.0283 .0029

0002 .9 -.0232 0012 -.0228 0011 -.0127 0170 .0104 L0003 -.0490 0023

1.4950 A -.0269 .0015 -.0209 .0013 -.0314 L0017 .0130 L0012 -.0203 0011

.2350 .3 -.0507 0054  -.0443 .00438 -.0590 .0063 .0113 .0026 -.03738 .Od3S

50 40 .0480 .5 -.0532 .0060 -.0496 .0056 -.0620 L0071 .0068 .0024 -.0393 .0041
.0070 r -.0405 .0035 -.0391 .0034 -.0472 L0042 .0029 .0012 -.0297 .0623

.0002 .9 -.0162 .0005 -.0160 .0005 -.0189 .0006 .0005 .0001 -.0113 .0003

1.4950 .1 -.0283 0013 -.0245 .0012 -.0311 L0013 -.0041 0007 -.0240 0011

.2350 3 -.0517 .0049  -.0480 .0043 -.0570 .0053 -.0126 .0020 -.0434 .0037

80 64 .0480 .5 -.0535 .0052  -.0513 .0049 -.059i .0058 -.0152 .0021 -.0446 .0040
0070 T -.0403 .0030 -.0395 .0029 -.0046 .0034 -.0124 .0012 -.0334 0022

.0002 .9 -.0160 .0004 -.0159 .0004 -.0177 .0005 -.0052 .0001 - -.0132 .0003

1.4950 1 -.0285 0012 -.0255 .0010 -.0308 0013 -.0092 L0005 -.0250 0010

.2350 .3 -.0511 .0041 -.0481 .00338 -.0553 L0045 -.0197 L0013 -.0443 .0033

100 30 .0480 .5 -.0523 .C044 -.0505 .0042 T.OSGT .0049 -.0215 0018 -.0452 .0035
.0070 7 -.0391 .0025 -.03384 .0024 -.0425 .0028 -.0167 L0010 -.0336 .0019

.0002 .9 -.0155 0004 -.0154 .0004 -.0168 .0004 -.0067 .0001 -.0133 .0003
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Table 2. (continued)

(2) 30% censoring case (y = 0.35)

R R(t]) R(t}) R(t3) R(t})

N n t0 R(tO) BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE

1.4950 .1 -.0435 .0036 -.0262 .0027 -.0544 .0042 .1002 .0033 -.0235 .0019

.2350 .3 -.0937 0164 -.0740 .0128 -.1176 .0206 L1129 .0063 -.0472 0066

30 12 .0480 .5 -.1069 0219 -.0931 0184 -.1351 .0286 0929 .0072 -.0509 0074
0070 7 -.0867 .0150 -.0806 .0135 -.1105 .0202 .0600 0042 -.0394 0044

.0002 .9 -.0367 .0028 -.0358 0027 -.0471 .0038 .0213 .0006 -.0160 .Lnov

1.4950 .1 -.0430 .0028 -.0322 .0022 -.0502 .0033 0372 0012 -.0298 0018

2350 3 -.0866 0123 -.0745 0102 -.1018 .0148 .0397 .0053 -.0570 0066

50 20 .0480 .5 -.0950 L0155 -.0869 L0137 -.1124 .0191 0304 .0043 -.0604 0076
.0070 7 -.0748 .0100 -.0714 .0094 -.0891 .0126 .0183 .0020 -.0464 .0N45

.0002 9 -.0309 0017 -.0304 L0017 -.0369 .0022 .0060 .0003 -.0187 0007

1.4950 .1_ -.0429 .0026 -.0359 .0021 -.0475 .0030 .0045 .0012 -.0341 0019

.2350 .3 -.0835 .0105 -.0759 .0092 -.0934 0121 -.0038 .0031 -.0642 0069

80 32 .0480 .5 -.0897 .0125 -.0847 .0115 -.1008 0146 -.0089 .0030 -.0675 (078
.0070 T -.0695 0077 -.0674 .0074 -.0784 .0091 -.0090 .0017 -.0515 0046

.0002 .9 -.0282 L0013 -.0280 .0013 -.0320 .0015 -.0042 .0002 -.0207 0007

1.4950 .1 -.0459 0027 -.0404 .0022 -.0496 .0030 -.0092 .0009 -.0386 0020

.2350 .3 -.0883 01056 -.0821 .0094 -.0962 L0119 -.0240 .0030 -.0721 :‘)074

100 40 0480 .5 -.0941 0123 -.0800 0114 -.1030 .0140 -.0279 .0032 -.0755 0083
0070 7 -.0724 .0074 -.0707 L0071 -.0796 .0086 -.0224 .0019 -.0573 D049

.0002 .9 -.0293 0012 -.0291 0012 -.0323 .0014 -.0093 .0003 -.0230 0008

35
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Table 3. Bilas’s and MSE’s for Estimators of the Parameters
when v is Unknown (p,v) = (0.5,0.5), (a,b)=(0,1), 6 =4, 6 =0.5

(1) 10% censoring case (v = 0.35)

/7 G
N n BIAS MSE  BIAS MSE BIAS MSE

16 12 -.1520 .0418 -.0787 .0215 1758 .0310
1151 .0285 .1056 .01986 0112 0057
20 16 -.1324 .0305 -.0848 .0183 1689 0285
.0876 .0197 .0912 .0162 .0030 .0048
28 22 -.1258 .0273 -.0838 .0171 .0038 .0001
.0719 0113 0667 .0090 0259 .0042

(2) 10% censoring case (v = 1.0)

8/~ 07 /7 05 [v3*
N n BIAS MSE BIAS MSE BIAS MSE

16 12 -.1520 .0418  .0665 0172 1845 .0344
3290  .2330 -.1416 0217 -.1841 0370
20 16 -.1324 .0305  .031] .0097 .1709 .0292
2504 1612 -.1260 0177 -1724 .0332
28 22 -.1252 0273  .0095 0085 0128 .0008

.2055 L0922  -.1058 .0123 -.1238 L0170
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Table 4. Bias’s and MSE’s for Estimators of the Reliability Function

when v is Unknown (p,v) = (0.5,0.5), (a,b)=(0,1), 6 =4, 6§ =0.

(1) 10% censoring case (y = 0.35)

R rR1™ R2**

N n  t0 R(t0) BIAS MSE BIAS MSE BIAS MSE
1.4950 1 -.0555 0051 -.0282 .0029 .0799 0044

0.2350 .3 -.0845 .0180 -.0343 .0094 1137 .0144

16 12 0.0480 .5 -.0431 .0182 .0031 0115 .0991 .0140
0.0070 7 .0088 0119 0295 0094 0577 0077

0.0002 .9 .0207 .0033 .0184 .0029 .0072 .0019

1.4950 1 -.0516 .0041 -.0322 .0025 0784 .0040

0.2350 3 -.0745 0133 -.0391 0079 .1073 0128

20 16 0.0480 .5 -.0388 .0131 -.0043 .0094 .0915 .0120
0.0070 .7 .0023 Q087 .0217 .0082 .0521  .0068

0002 9 0133 0030 0153 .0026 .0056  .0018

1.4950 1 -.0500 .0039 -.0323 .0024 -.0005 .0000

02350 .3  -0735 0126 -0463 .0081 .0158  .0012

28 22 0.0480 .5 -.0439 0114  -.0216 .0084 .0246 .0040
0.0070 g -.0040 0069 .0044 .0058 .0189 .0043

0.0002 .9  .0125 0019 .0087 .0016 0027  .0016

(2) 10% censoring case (v = 1.0)

R rR1** rR2**

N a0 R(t0) BIAS MSE BIAS MSE BIAS MSE
1151 .1 -0555 0051 .0263 0036 0921 0050

0.602 .3 -.0845 0180 -.0004 .0048 .0770 0061

16 12 0.347 5 -.0435 0182 ..0377 .0058 .0357 .0060
0.178 7 .0083 0120 -.0605 .0076 -.0076 .0008

0052 B 0207 0034 -.0512 0038 -.0326 0016

1.151 1 -.0516 0041 .0205 .0020 .0869 .0041

0.602 .3 -.0745 .0133  -.0149 .0041 .0747 .0057

20 16 0.347 .5 -.0392 .0131 -.0473 .0058 .0361 .0059
0.178 7 .0019 .0098  -.0641 .0076 -.0048 .0007

0053 . 0133 0030 -.0403 .0035 -.0289  .0014

1.151 1 -.0501 .0039 .0102 .0017 -0096 .0002

0.602 .3 -.0735 .0126  -.0233 .0045 -.0161 .0005

28 22 0.347 -5 -.0442 .0114 -.0506 .0070 -.0409 .0021
0.1%8 7 -.0045 .0070  -.0618 .0070 -'.0546 .0035

0.053 .9 L0125 .0022  -.0438 .0027 -.0429 .0022

37
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Figure 1. Bayes Risk’s Ratio of the Bayes Estimator to the MLE
when the True Prior is the Uniform Distribution

(1,v) =(3,2), n =280, Z?:l vi =20
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Figure 2. Bayes Risk’s Ratio of the Bayes Estimator to the MLE
when the True Prior is the Gamma Distribution
(u,v)=1(3,2),n=80, >, 7i=20, a=1
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