Emulsion Graft Copolymerization of Methyl Methacrylate onto Cotton Fiber

Hyun-Sook Bae, Hyo-Seon Ryu* and Sung-Reon Kim*

Dept. of Clothing and Textiles, College of Natural Science, Chang-won National University
*Dept. of Clothing and Textiles, College of Home Economics, Seoul National University

Abstract

Emulsion graft copolymerization of MMA onto cotton fiber using Ce(IV) salt as an initiator was carried out. Graft yield and graft efficiency were observed according to the kinds and concentrations of emulsifier and polymerization conditions. The physical properties of MMA grafted cotton fabric were investigated.

The results of this study were as follows:
1. The highest graft yield of emulsion graft polymerization occurred at the concentration below cmc of emulsifier, which was different from emulsion polymerization. Nonionic surfactant as an emulsifier was more effective than anionic one.
2. The highest graft yield was obtained at the initiator concentration 1×10^{-3} mol/l. The viscometric molecular weight of PMMA was in the order of 10^8.
3. As reaction time increased, the graft yield increased but the graft efficiency decreased.
4. Elevation of reaction temperature resulted in increase of graft yield. The apparent activation energy of MMA graft polymerization was 4.72 Kcal/mol.
5. Physical properties of MMA grafted cotton fabric varied with increase of grafting. Thickness and stiffness showed a noticeable increase, whereas tensile strength and elongation was slightly increased. Crease recovery increased as the graft yield increase up to 50% and decreased thereafter.
I. 序 論

纖維에의 그라프트重合에는 Ce(IV)螫이 알코올, 자용, 알데히드, 아민 등의 邊烷性基를 가진 有機物과 쉽게 複合體를 만들고 酸化還元反應系에서 중기 重合體에 레디액을 형성하여 그라프트重合體를 생성한다는 Mino 등13의 보고이후 여러가지 纖維에의 그라프트重合에 Ce(IV)螫을 初開剤로 하는 研究가 많이 시도되고 있다.

Ce(IV)螫에 의한 그라프트重合은 一電子 轉移(singule electron transfer)에 의해 비닐重合을 일으킬 수 있는 自由레디액이 셀로로스에 分子 체에 직접 형성되므로써重合이 용이하게 이루어질 뿐만 아니라 단일重合體의 離度를uru하하게 된다.14. 이때 그라프트重合의 開始反應은 셀로로스에 分子 내 C6 위치의 primary methyol基에서 自由레디액이 직접 생성되어 反應이 開始되며,15. 水素글루로소성 單位體의 C6~C8 끝으로 基사이의 결합이 끊어져 카르복실 基와 레디액이 생성되어 그라프트重合이 일어난다.16. 또한 셀로로스의 분자 末端에 있는 헤테로레지 핵가 Ce(IV)螫에 의해 공격을 받아 카르복실 基와 음의 레디액이 생성되는데,17. 이때에는 끝으로 重合體가 생성된다.18. 이와같이 Ce(IV)螫에 의한 開始反應은 重合條件에 따라 primary methyol基와 1, 2-글리콜基 또는 헤테로레지 핵에서 일어나 重合이 진행된다.

여기에서 Ce(IV)螫을 開始剤로 한 그라프트重合에에는 특히 아크릴아미드(AM), 아크릴로세트산(AN)과 아크릴산 및 아크릴알데히드 에스테르 單量體가 適合하나, 單量體 自身의 反應性는 纖維에의 單量體 與散速度, 물에의 溶解性이 높아적으로 작용하여 안정을 높한다.19. 이렇 한 單量體의 反應性은 纖維에의 種類에 따라 다소 차이를 보이고, 대개 비닐아세테이트(VAc)나 스티렌(St)에 비 해 보다 極性이 큰 메칠 메타크릴레이트(MMA)나 메틸 아크릴레이트(MA)의 反應性이 더 높다. 특히 MMA는 純水 性이면서 活性이 크며 α-메틸 基가 單量體의 π電子密度를 증가시켜 金屬과 염계 결합을 형 성하지만20. 그라프트重合이 용이하게 일어날 것으로 생 각된다.

MMA의 그라프트重合에 관한 연구중에서 Huque 등21은 纖維에의 그라프트重合을 시도하여 다른 單量體에 비해 MMA의 반응성이 높을 증명하였고, Imoto 등22는 無機媒下에서 纖維에 그라프트重合을 하였으며, Lenka23는 開始剤로 V(V)螫 사용하여 그라프트重合을 하였다. 그러나 Ce(IV)螫을 開始剤로 하여 纖維에 그라프트重合時 重合条件에 따른 그라프트效果에 대한 비교와 그라프트된 纖維에의 物性變化에 대한 구체적인 研究가 미흡하다.

한편 그라프트重合시 乳化剤를 사용하면 그라프트率 이 상한되는 보고가 있다. 鳥飼24는 풀리 프로필렌에 VAc를 乳化 그라프트 重合시킨 결과 場相 重合, 溶液 重合에서 보다 그라프트 率가 높다고 하였다. 井手25 등은 PVA에 아크릴산 에스테르를 乳化 그라프트重合하였는데 研究에 사용한 乳化剤의 種類에 관계없이 乳化剤를 사용하지 않았을 때 보다 그라프트率가 크게 증가한다고 하였다.

따라서 본 연구에서는 Ce(IV)螫을 開始剤로 하고 單量體로 重合活性이 큰 MMA를 2부하하여 乳化 그라프트重合에 의한 纖維에의 그라프트 重合挙動을 重合條件에 따라 검토하고, 이를 纖維物에 적용하여 그라프트重合效果를 비교하여써 乳化剤 및 開始剤에 의한 영향을 실과보고 아울러 MMA만의 그라프트重合에 의한 개선을 찾기 위해 그라프트 重合 纖維物의 성질중에서 長點은 그대로 유지하면서 短點을 찾아내어 이를 보완하기 위한 자료로 참고자 하였다.

II. 実 験

II-1. 試料及試薬

II-1-1. 試料

纖維에는 韓國 紗類試驗 檢查所에서 製作한 纖維類製品의 染色 堅年度 試験用 添附 白布(KS K 0915, 密度 141×135×cm)을 採用, 精練한 纖維物 紡織物を 粉碎機(Wiley Mill, Model CM-S)로 商度하여 20 mesh 이하의 紡織粉末로 만들어 사용하였다.

II-1-2. 試薬

開始剤: ceric ammonium nitrate (CAN), 試薬 特級, Fluka

單量體: methyl methacrylate (MMA), 試薬 特級, 純化化学株式会社

窒素 氣流下에서 減圧 蒸溜(44~46℃/100 mmHg)한 후 冷蔵 保管하여 使用하였다.
乳화剤: sodium lauryl sulfate (SLS), 試験 1 級, 關東化學株式会社
ビニール (sodium stearate), 試験 1 級, 關東化學株式会社
triton X-100 (polyethylene glycol mono-p-iso-octylphenyl ether, 附加 原料 9~10),
試験 1 級, 国産化學株式会社
窒素酸 (試験 特級(Shinyo Pure Chem. Co. Ltd.)を
使用하였고, アセトン, 酒精等 試験品市販 1 級
品を グラフト化で使用した。)

II-2. 乳化 グラフト 重合

溶媒 冷却剤, 搪拌器, 窒素 流入管, 溫度計が装置された300 ml ポラスフロ恒温水槽に装置した後, 窒素 氣流
を通して反応容器中の酸素を除去し窒素を置換した後, 酸化剤を反応容器に
わたしたる 次に窒素 気流下にて壁内 搪拌器を設置し, 搪拌する
酸化剤を乳化剤で一定温度に設定
した後, 時間的に硫酸溶液 (1×10^{-2} mol/l) で溶媒を加え
し, 乳化剤を完全に乳化する
後, 時間的に硫酸溶液を投加し,
始動剤を添加してグラフト
重合反応を開始した。

\[[\eta] = 0.96 \times 10^{-4} \text{ M}^n \text{g} \]

II-5. グラフト 重合 繊維物の物性 測定

II-5-1. 体験

KS K 0506, の重合値測定器 (Teclock dial gauge SM-112) とグラフト 重合 繊維物の体験を測定した。

II-5-2. 引張強度

引張強度及伸度は Instron (Model 1130) を使用し
る ravelled strip 法で測定した。原料の
試験片を試験片を用いて

試料幅 : 1.5 cm 厚さ方向
試料厚さ: 2.5 cm
cross head speed: 20 cm/min
chart speed: 50 cm/min

II-5-3. 防歧度

コンサート 去締復 測定器を用いて KS K 0550 に
防歧度を測定した。試料を用いて

防歧度 = \frac{a}{\text{180}} \times 100 (a: 開角度)

II-5-4. 剛軟度

クララック 測定器を用いて試料の剛軟度を

試料の厚さは 1.5 x 6 cm で

試料を用いて剛软度を測定した。
Ⅲ. 결과 및 고찰

開始剤, 聯量體, 重合體의 혼합률이 존재하는グラ프트 重合系에 乳化剤를 첨가하면 界面活性剤에 의한 성유의 酸潤이 증진되고 성유내부로 始発載과 聯量體의 吐出가 촉진되므로19) 乳化グラフ트 重合은 乳化剤를 사용하지 않은グラフ트 重合과 상이한 거동을 보일 것으로 생각되며, 前報20)에 의하면 乳化グラフ트 重合은 始発 傳遞가 始発重合反應을 분리시킨 2段階 乳化載 重合에 비해 低濃度의 聯量體로도 效果의 인グラフ트 重合이 가능하였다.

일반적으로 不均一系의 乳化グラフ트 重合에서 乳化剤는 水相内の 聯量體임을 촉진하거나 吐出 重合體로 聯量體의 擴散을 촉진하는데 이 두가지 작용은 競合의으로 일어난다21). 乳化剤의 濃度가 cmc 이하일 때는 乳化剤가 聯量體로 乳化시켜 重合体로부터 분리하여グラフ트 重合過程에서 競合 重合體의 생성을 억제하고 동시에 織維 interiors에서 始発載과 聯量體의 吐出가 촉진되어 吐出 重合體에서의グラフ트 重合이 진행되는 반면, 乳化剤의 濃度가 cmc 이상일 때는 競合이 억제되어 랜덤프가 쉽게 水相으로서 乳化載 重合에서와 같이 單獨重合이 촉진되어22) 乳化載 重合이 競合의로 일어나는 경우는 乳化載 重合에서의 성유의 두 가지 작용은 競合의으로 일어난다21). 乳化剤를 포함한 重合系에 水相내 캐주악을 사용한 경우에는 競合가 競合體 重合子의 競合을 촉진시키며 競合이 타이imetype이 되고 캐주악을 사용하지 않은 경우보다 cmc가 낮아지게 되어21) 乳化載 重合을 나타내는 乳化剤의 濃度가 달라질 것으로 생각되므로 乳化剤의 種類 및 濃度에 따른グラフ트 重合 效果를 검토할 필요가 있다.

Table 1. Effect of emulsifier type on MMA graft polymerization

<table>
<thead>
<tr>
<th>Emulsifiers</th>
<th>G.Y. [%]</th>
<th>G.E. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS</td>
<td>136.3</td>
<td>56.5</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>201.9</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Ⅲ-1. 乳化剤濃度의 影響

乳化剤濃度에 따라 乳化載 形成能力, 聯量體 分散力, 織維내의 競合性 등이 차이가 나는데 이는 競合載 競合體를 촉진할 경우가 아니라 乳化載의 濃度가 乳化載의 studying는 반면, 비이온계 競合載의 경우는 競合載가 乳化載의 重合이 촉진되며 聯量體의 競合性이 떨어지는 반면, 비이온계 競合載의 경우는 競合載가 聯量體로의 轉換이 용이하거나 乳化載의 安定性이 떨어지므로23) 織維에 대한 MMA의 乳化載 重合에서 더 效果의 인 乳化剤를 선택하기 위해 이온계 競合載로 SLS를 사용하였고, 비이온계 競合載로는 triton X-100을 채택하였는데 SLS에는 성유의 발생을 억제하기 위해 5% (w/w)의 비율을 혼합하여 실험하였다. 이에 始発载의 濃度는 1.0×10⁻¹mol/l, 聯量體의 濃度는 5.0×10⁻¹mol/l, 乳化載의 濃度는 모두 cmc 이하로서 SLS는 6.0×10⁻¹mol/l, triton X-100은 8.0×10⁻¹mol/l로 하여 60℃에서 2시간 동안 重合의 결과를 Table 1에 나타내었다.

이에 의하면 triton X-100을 사용하였을 경우의 SLS를 사용하는 결과, 乳化載 및 乳化载의 效果가 모두 높아 MWA의 乳化載 重合에서 비이온계 競合載가 더 效果의임을 알 수 있는데 이는 비이온계 競合載가 성유 내부로의 吐出가 위 乳化載 重合이 용이하게 일어났기 때문에 생각된다.

Fig. 1은 乳化載의 濃度에 따른 乳化載 重合 및 乳化載의 效果를 나타내는 것으로써 乳化載의 濃度가 8.0×10⁻¹mol/l까지 乳化載 重合이 增大하다가 그 이후 減少하였 다. 乳化載 重合은 乳化載의 作用으로 織維내의 聯量體의 吐出이 轉換의으로 일어난다24). 本實験에서 사용한 triton X-100의 cmc는 9.0×10⁻¹mol/l(30℃)25)인데 乳化載의 濃度가
cmc 이하이면 중기 중합체에 형성된 레디컬에 의해 개
시제와 유량의 수분이 수분을 유도하여 중기 중합체에서 그라
프트 중합이 활발히 진행되나 유화매의 유도체가 cmc 이상으로 증가하면 미세수가 증가하게 되어 생성된 레디컬이 미세슬로 융합하여 유도하여 단기도 중합을 유도하게 되므로 그라프트 효율이 떨어지게 된다.
이와같이 유화 그라프트 중합은 미세미세에서 중합을 일
으키는 일반 유화 중합과는 다른 구조를 보여주고 있
우로 유화매의 유도체는 유도체와 수분을 유도하여 미세미세의 단기도 중합을 억제하는 유도체를 찾는 것이 그라프트 중합 효과를
향상시키는 방법으로 본 연구에서는 triton X-100의
유도체를 cmc 이하인 8×10⁻⁴ mol/l로 하여 실험하였다.

Fig. 1. Effect of emulsifier concentration on MMA graft polymerization.
Graft polymerization conditions:
- CAN conc. 1×10⁻² mol/l
- MMA conc. 5×10⁻¹ mol/l
- HNO₃ conc. 1×10⁻² mol/l
- temp. 60℃
- time 2 hrs

Fig. 2. Effect of CAN concentration on MMA graft polymerization.
Graft polymerization conditions:
- Triton X-100 conc. 8×10⁻⁴ mol/l
- MMA conc. 5×10⁻¹ mol/l
- HNO₃ conc. 1×10⁻² mol/l
- temp. 60℃
- time 2 hrs

III-1-3. 개시제 유도체의 영향
개시제의 농도가 그라프트 중합에 미치는 영향을 검토하기 위해 개시제 유도체를 변화시키면서 유화매의 유도체를
8×10⁻⁴ mol/l, MMA의 유도체를 5×10⁻¹ mol/l로 하여
60℃에서 2시간 동안 그라프트 중합한 결과를 Fig. 2에
내용하였다.
Fig. 2에 의하면 그라프트 중합 유도체의 유도체가 1×
III-1-4. 反응시간의 영향

반응시간이グラフト重合에 미치는 영향을 향후하기 위해乳化剤의濃度을 8×10^{-4}mol/l, 開始剤의濃度을 1×10^{-2}mol/l, MMA의濃度를 5×10^{-1}mol/l로 하여60℃에서グラフト重合한 결과는Fig.3과 같다. 이를 보면 반응時間が 길어짐에 따라グラフト率은 증가한 반면 그래프 효율은 감소하는 경향을 나타내고 있으므로시간이 지난에 따라重合이優勢하게 일어나는 것으로 생각된다. 이것은 反應初期에水溶液内에서줄기重合體에 생성된ラジカル에 의해グラフト重合體가 많이生成되었으나反應이 진행됨에 따라重合体의生成이 더욱 활발하여서グラフト率의上昇이鈍화된기 때문으로 보인다.

![Fig. 3. Effect of reaction time on MMA graft polymerization.](image)

Graft polymerization conditions:
- CAN conc. 1×10^{-2}mol/l
- Triton X-100 conc. 8×10^{-4}mol/l
- MMA conc. 5×10^{-1}mol/l
- HNO₃ conc. 1×10^{-2}mol/l
- temp. 60℃

여기에서 反應時間が1시간 정도 지나면グラフト率의上昇이鈍화되나그ラフト重合을 충분히活性화시키기 위해서는2시간 정도가 적당한 것으로 생각되어グラフト重合反應은2시간으로 하였다.

III-1-5. 反應温度의 영향

反應用温度がグラフト重合에 미치는影響을検討하기 위해乳化剤와開始剤의濃度を 各々 8×10^{-4}mol/l, 1×10^{-2}mol/l로, MMA의濃度を 5×10^{-1}mol/l로 하여2시간동안グラフト重合한結果는Fig.4에 나타내었다. 여기에서 보록 温度가상승함에 따라グラフト率이 크게 증가하였고グラフト效率은 큰変化이 없었다.一般的으로グラフト重合의活性化エネルギー는重合体の活性化エネルギー보다 높다고 한다. 따라서 温度가 높아지면重合體の擴散と重合體에서ラジカル生成이促進되는 것이다. 그러나 温度가상승함에 따라グラフト效率은 큰변화를 나타내지 않았는데, 이는纖維의膨潤性이 증가하고 줄기重合体로開始剤와重合體의擴散이 용이해져 برنامج이 上昇하고아울러重合도 활발하게 일어나기 때문이다. 그러하여 본実験에서의反應用温度는グラフト率의上昇이鈍화된60℃로택하였다. 한편グラフト重合의反應用温度依存性을 살펴보기 위해 다음과 같은アレニウス式을 이용하였다.

\[k = A e^{-Ea/RT} \] \hspace{1cm} (2)

![Fig. 4. Effect of reaction temperature on MMA graft polymerization.](image)

Graft polymerization conditions:
- CAN conc. 1×10^{-2}mol/l
- Triton X-100 conc. 8×10^{-4}mol/l
- MMA conc. 5×10^{-1}mol/l
- HNO₃ conc. 1×10^{-2}mol/l
- time. 2 hrs
여기서 키는 빠르도, \(A \)는 정적정율, \(T \)는 절대온도, \(R \)은 일정정율이다. 이때 그라프트 중합률 원리로부터 계산한 그라프트 중합 반응신속도 (gp: rate of graft polymerization, g/min)의 상수 (log Gp)를 1/T에 대해 아데니우스 법칙한 것이 Fig. 5이며 이 직선 의 기울기로부터 계산한 활성화 에너지는 4.72 Kcal/mol 이었다.

Ce(IV)는 의해 MMA의 그라프트 중합에 관한 연구에서 나타난 활성화 에너지는 적절히 활성화 경우 7.74 Kcal/mol이고, PET의 경우 5.2 Kcal/mol 정도인데 비해 본 실험에서 얻은 결과에 활성화 에너지는 4.72 Kcal/mol로서 가장 적게 나타났으므로, 화학적이라는 다른 활성화 에너지 비해 보다 낮은 온도에서도 그라프트 중합 반응이 용이하게 일어남을 알 수 있다.

![Table 2. Effect of initiator concentration on average molecular weight of g-PMMA](image)

<table>
<thead>
<tr>
<th>CAN [x10^{-3} mol/l]</th>
<th>G.Y. [%]</th>
<th>Average molecular weight [x10^{-4}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>179.0</td>
<td>3.84</td>
</tr>
<tr>
<td>10</td>
<td>201.9</td>
<td>4.02</td>
</tr>
<tr>
<td>15</td>
<td>195.5</td>
<td>3.75</td>
</tr>
<tr>
<td>20</td>
<td>192.0</td>
<td>3.67</td>
</tr>
<tr>
<td>25</td>
<td>184.5</td>
<td>3.50</td>
</tr>
<tr>
<td>30</td>
<td>176.9</td>
<td>3.38</td>
</tr>
<tr>
<td>40</td>
<td>150.4</td>
<td>3.14</td>
</tr>
</tbody>
</table>

III-2. 그라프트 중합 화합물의 물성

화합물에 대한 MMA의 乳化 그라프트 중합에서 여러 가지 반응조건에 따라 중합도가 다를 나타나었으므로 이것을 꼭지로 하여 실내진한 측면에서의 적응성을 검토해 보기 위해 화합물에 MMA를 그라프트 중합하여 두개, 영나드, 중합양, 모드, 모수도를 정한하였다. 이때 중합조건은 乳化제의 정도를 \(8 \times 10^{-4} \) mol/l, MMA의 정도를 \(5 \times 10^{-1} \) mol/l로 하여 60℃에서 2시간 동안 乳화제의 번도를 변화시키면서 그라프트 중합하였다.

III-2-1. 乳化

Fig. 6은 그라프트된 화합물의 乾燥時과 乾燥時의 乳化
度를 나타낸 것으로 그라프트 후이 증가 함에 따라 외력가장성이 증가하거나 그라프트 후이 어 느한게 이상이 되면 감소하여 섬유물의 내력성 상향에 그라프트 후이 어느 정도 효과적임을 알 수 있다. 또한, 외력용도금속, 외력용도글로스가 더 감소하였는데 이것은 섬유가 내력이 되편부터 섬유내의 crosslink를 약화시키고 구조 형성을 도와주기 위해서로 생각된다. 또한, 그라프트 후이 아주 낮은 후에 내력가장성이 더욱 커진 것은 섬유성 합합체의 그라프트 후이가 섬유의 영향을 덜 받기 때문으로 생각된다.

Negishi등(28)은 면직물에 아크릴산 에스테르 단량체를 그라프트 후이에 섬유가 크게 단량체가 증가하였다고 하였는데 이는, 이산화 클로로움 섬유물의 내력성 단량체에 그라프트 후이가 되면 섬유 내력성과 단량체의 크기가 증가되거나 단량체 내력성 내력성의 구조가 증가되므로 섬유 내력성이 open structure를 갖기 때문이라고 하였다. 그러나 MMA는 아크릴산 에스테르 단량체에 비하여 섬유가 단량체가 둔으로 그라프트 후이 어느 정도 이상이 되면 섬유가 감소하여 오하리 구조성이 바꾸어 받는 것으로 생각된다. 그러나, 그라프트 후이 내력성이 둔으로 최소한 전기에서 적절한 그라프트 후이를 얻을 수 있는 그라프트 후이의 조건을 요구한다.

III-2-2. 引張强度

Fig. 7은 MMA를 그라프트 후이 합합 섬유물의 내력성과 그라프트 후이에 따라 나타난 것으로 그라프트 후이 내력성이 낮은 후에의 내력가장성이 다소 감소하다가 증가하였으나 그라프트 후이 80% 이상이 되면 다시 감소하였다. 이처럼 그라프트 후이 내력성이 낮은 후에의 내력가장성이 다소 감소된 것은 내력가장성과 비교적 높은 후에 의한 내력가장성의 초기성과의 대응을 보여주며, 그라프트 후이 아주 높아졌을 때 내력가장성은 단량체의 그라프트 후이 합합 섬유의 내력성의 과정에 30%의 전이가 없었을 때 내력가장성이 촉진되었다. 그러나 그라프트 후이 주로 내력가장성이 작아지지 않아 내력가장성이 적절하게 나타났기 때문에 내력가장성의 결과가 나타난 것이다.

Fig. 8에 의하면 그라프트 후의 섬유물의 내력성은 그라프트 후이 주로 내력가장성에 따라 감소하다가 증가하였는데 MMA의 내력성은 섬유가 내력성, 내력가장성 합합체가 증가하여 내력가장성의 조건을 적용하여 그라프트 후이 내력가장성과의 촉진을 나타내므로 사료된다. 한편, 그라프트 후이 내력가장성 내력가장성의 내력가장성과의 영향이 적절한 섬유가 감소하여 내력가장성이 다시 감소하는 것으로 추정된다.

III-2-3. 剛軟度

Fig. 9와 Fig. 10은 그라프트 후의 합합 섬유물의 내력성과의 대비를 나타낸 것으로 그라프트 후이 내력가장성에 따라 섬유가의 벗겨지게 되는데 이는 합합체가 평균된 성유내부로 침투하여 두께가 감소한 것이며, MMA의 Tg가 높아 섬유가 전이가 적절하게 나타났기 때문에 내력가장성이 적절하게 나타난 것이다.
Fig. 9. Relation between stiffness and graft yield of MMA grafted cotton fabrics.

Fig. 10. Relation between thickness and graft yield of MMA grafted cotton fabrics.

IV. 結 論

綿織維にCe(IV)塩を開始剤に導入するMMAをグラフト重合させた授化剤の種類と濃度、及び反応条件によるグラフト重合の挙動を実験し、その織維物に応用し、グラフト重合した綿織維の物性を検討した結果は以下のとおりである。

1. 乳化 納フロート重合では、乳化剤の作業性により、溶液内の単独重合と共重合体におけるグラフト重合と競合的であり、特に乳化剤濃度がcmc以下において、共重合率をより高め、グラフト重合については、双分子界面活性剤が著しい効果を示した。

2. Ce(IV)塩溶液の変化が1×10^{-2} mol/lに相当し、共重合率は高いが、開始剤濃度が高すぎると、Ce(IV)塩の酸化反応が進行し、グラフト重合率が低くなることが示された。したがって、グラフト重合が進行するPMMAの分子量もCe(IV)塩の濃度が増加するに伴い著しく増加した。

3. 反応温度の変化に伴い、グラフト重合率は温度が上昇すると、グラフト率が増加し、低温度条件では、重合率が著しく低下した。

4. グラフト重合された綿織維は、グラフト率が増加すると、織維の強度が増加し、耐酸化性が向上し、乾燥時の耐酸化性がさらに著しく増加した。

文献

4) N. Gaylord, A Proposed New Mechanism for Catalyzed and Uncatalyzed Graf Polymerization onto Cellulose, *J. Polymer Sci.,* 37, 153 (1972)

7) 井手文雄, セルロースへのアクリロニトリルならびにメチルアクリレートのグラフト重合, 工化, 65, 82 (1962)
10) M. Imoto, M. Kondo and K. Takemoto, Vinyl polymerization (Pfröpfung von Vinylmonomeren auf verschiedenen Fasern, Die Makromolekulare Chemie, 89, 165 (1965)
12) 鳥饲貞男, 向山純次, ポリプロピレンへの酢酸ビニルの乳化グラフト重合, 異化, 19, 337 (1962)
13) 井手文雄, 中野信太郎, 中塚和夫, ポリビニルアルコールへのアクリル酸エステルの乳化グラフト重合, 高化, 26, 575 (1969)
15) 井手文雄, グラフト重合とその応用, 高分子刊行会, p26, 1977
16) 實玄淑・金聲蓮, 綿織維에 Methyl Methacrylate의

グラフト 重合 (2段階 グラフト 重合과 乳化グラフト 重合의 比較), 韓國衣類學會誌, 13(1), 89 (1989)
18) 北村愛夫, 纖維素へのステレングラフト乳化重合における乳化機構について, 日織誌, 35(2), 59 (1966)
20) 西一郎, 今井小合昭朗, 簇井正典(編), 界面活性剤便覧, 産業図書株式会社, p 133, 1979
21) 井手文雄, op., cit., p 24, 1977
23) 井手文雄, op., cit., p 17, 1977