AN INVENTORY MODEL AND ITS OPTIMIZATION

Eui Yong Lee and Won J. Park

An inventory model with constant demand of rate $\mu(\mu > 0)$ is considered. The inventory is replenished up to β by a deliveryman who arrives according to a Poisson process of rate λ , only if the stock does not exceed a threshold $\alpha(0 \leq \alpha \leq \beta)$. The distribution function of X(t), the stock at time t, is deduced from a partial differential equation, two interesting characteristics, the first passage time to state 0 and the probability that the stock exceeds a certain level during a given interval, are considered, the stationary distribution is obtained more explicitly, and an optimal policy with respect to the threshold α is studied.

1. Introduction

In this paper, an inventory model is introduced. Consider an inventory whose stock is initially β , thereafter decreases linearly at rate μ , $\mu > 0$, and remains at 0 if the inventory becomes empty. The inventory is replenished by a deliveryman who arrives at the inventory according to a Poisson process of rate λ . If the level of the inventory exceeds a threshold α , $0 \leq \alpha \leq \beta$, he does nothing, otherwise he instantaneously increases the level of the inventory up to β .

Baxter and Lee [1] introduced a similar inventory model where the size of a delivery is a random variable Y such that $Y \ge \alpha$ almost surely. In the paper, they derived a Laplace-Stieltjes transform of the distribution function of the level of the inventory at time t and considered the stationary case where the distribution function does not depend on time t.

Since the inventory is replenished up to β in our model rather than by a random amount (β may be considered as the capacity of the inventory),

Received September 3, 1990.

the points where the restockings occur form a renewal process, and this fact enables us to obtain the distribution function of the level of the inventory at time t directly and to study the stationary case more explicitly. We further consider two interesting characteristics of the model, the first passage time to state 0 and the probability that the stock exceeds a certain level during a given interval. We also show that there exists a unique optimal policy with respect to the threshold α , after assigning costs to the inventory.

2. The Distribution Function

Let X(t) be the level of the inventory at time t and F(x,t) be the distribution function of X(t). We can have the following three mutually exclusive events during the small interval $(t, t + \delta t)$:

(a) The deliveryman does not come, then

$$X(t + \delta t) = \begin{cases} X(t) - \mu \delta t & \text{almost surely if } X(t) > \mu \delta t \\ 0 & \text{almost surely if } X(t) \le \mu \delta t. \end{cases}$$

(b) The deliveryman comes but does nothing since $X(t) > \alpha$, then

$$X(t + \delta t) = X(t) - \mu \delta t$$
 almost surely.

(c) The deliveryman comes and makes a delivery since $X(t) \leq \alpha$ then

$$X(t + \delta t) = \beta - \mu \delta t$$
 almost surely.

Thus, for $0 \leq x < \beta$,

$$F(x,t+\delta t) = (1-\lambda\delta t)F(x+\mu\delta t,t) + \lambda\delta tP\{X(t) \le x+\mu\delta t, X(t) > \alpha\} + \lambda\delta tI\{x \ge \beta - \mu\delta t\}F(\alpha,t) + o(\delta t),$$

where I_A denotes the indicator of event A. Now

$$F(x + \mu\delta t, t) = F(x, t) + \mu\delta t \frac{\partial}{\partial x}F(x, t) + o(\delta t)$$

on performing a Taylor series expansion, assuming that $\frac{\partial}{\partial x}F(x,t)$ exists. Substituting this expression into the above equation, subtracting F(x,t) from each side of the equation, dividing by δt , and letting $\delta t \to 0$, we have the following partial differential equation:

$$\frac{\partial}{\partial t}F(x,t) = \mu \frac{\partial}{\partial x}F(x,t) - \lambda F(x \wedge \alpha, t), \quad \text{for} \quad 0 \le x < \beta.$$
(2.1)

An Inventory Model and its Optimization

Since the level of the inventory cannot exceed β , $F(\beta, t) = 1$ for t > 0.

Before we solve the equation (2.1), we first derive a formula for $F(\alpha, t)$, which can be used as a boundary condition.

Lemma 2.1. If we ignore the first passage time to α , i.e. $\frac{\beta-\alpha}{\mu}$, then

$$F(\alpha, t) = e^{-\lambda t} + \int_0^t e^{-\lambda(t-u)} h(u) du,$$

where $h(t) = \sum_{n=1}^{\infty} g^{(n)}(t)$ and $g(t) = \lambda e^{-\lambda(t - \frac{\beta - \alpha}{u})}$.

Proof. Notice that the points where the stock of the inventory reaches α from an embedded renewal process. Let T^* be the time between successive renewals. Then

$$T^* = T + \frac{\beta - \alpha}{\mu},$$

where T is an exponential random variable with parameter λ . The probability density function of T^* , g(t) say, is given by

$$g(t) = \lambda e^{-\lambda(t - \frac{\beta - \alpha}{\mu})}, \quad \text{for} \quad t > \frac{\beta - \alpha}{\mu}.$$

Let h(t) denote the renewal density function of the embedded renewal process, that is, $h(t) = \sum_{n=1}^{\infty} g^{(n)}(t)$, where the superscript denotes *n*-fold recursive convolution.

Now, notice that $F(\alpha, t) = 1$ if the deliveryman has not arrived until time t or if there is a renewal in the embedded renewal process at $u \in (0, t]$ and the deliveryman does not arrive in the interval [u, t]. Hence

$$F(\alpha, t) = e^{-\lambda t} + \int_0^t e^{-\lambda(t-u)} h(u) du.$$

Now, the equation (2.1) can be divided into the following two equations:

$$\frac{\partial}{\partial t}F(x,t) = \mu \frac{\partial}{\partial x}F(x,t) - \lambda F(x,t), \quad \text{for} \quad 0 \le x < \alpha,$$

and

$$\frac{\partial}{\partial t}F(x,t) = \mu \frac{\partial}{\partial x}F(x,t) - \lambda F(\alpha,t), \quad \text{for} \quad \alpha \le x < \beta.$$

Applying $F(\alpha, t)$ obtained in Lemma 2.1 to both equations as a boundary condition and solving the partial differential equations for F(x, t) by an

argument similar to that of Colton [2, p.6-11], we see that

$$\begin{split} F(x,t) &= F(\alpha,t+\frac{x-\alpha}{\mu})e^{\lambda(x-\alpha)/\mu}, \quad \text{for} \quad 0 \le x < \alpha, \quad \text{and} \\ F(x,t) &= F(\alpha,t+\frac{x-\alpha}{\mu}) + \frac{\lambda}{\mu}\int_{\alpha}^{x}F(\alpha,t+\frac{x-u}{\mu})du, \quad \text{for} \quad \alpha \le x < \beta, \end{split}$$

where $F(\alpha, t)$ is given in Lemma 2.1.

3. The First Passage Time to State 0

Define $T_0 = \inf\{t|X(t) = 0\}$, the first passage time to state 0. Let Y_1, Y_2, \dots, Y_N be the sequence of the amounts of the deliveries made by the deliveryman, before the stock reaches state 0, then

$$Y_i \stackrel{\mathcal{D}}{=} \beta - \alpha + \mu T, \quad i = 1, 2, \cdots, N,$$

under the condition that T, the exponential random variable with parameter λ , is less than $\frac{\alpha}{\mu}$, and so the distribution function of Y_i , D(y) say, is given by

$$D(y) = P(\beta - \alpha + \mu T \le y | T < \frac{\alpha}{\mu})$$

=
$$\begin{cases} 0, & \text{for } y \le \beta - \alpha \\ \frac{1 - e^{-\lambda(y - \beta + \alpha)/\mu}}{1, & \text{for } \beta - \alpha < y \le \beta \end{cases}$$

Further,

$$P(N = n) = e^{-\alpha\lambda/\mu} (1 - e^{-\alpha\lambda/\mu})^n, \quad n = 0, 1, 2, \cdots.$$

Now, observed that T_0 satisfies the following relation :

$$T_0 \stackrel{\mathcal{D}}{=} \frac{1}{\mu} \left(\beta + \sum_{i=0}^N Y_i\right)$$

and hence the distribution function of T_0 , L(t) say, is given by

$$L(t) = \sum_{n=0}^{\infty} D^{(n)}(\mu t - \beta) e^{-\alpha \lambda/\mu} (1 - e^{-\alpha \lambda/\mu})^n,$$

where $D^{(n)}$ is the *n*-fold recursive Stieltjes convolution of D, $D^{(0)}$ being the Heaviside function. It can be also shown that

$$E(T_0) = \frac{\beta - \alpha}{\mu} e^{\alpha \lambda/\mu} + \frac{1}{\lambda} (e^{\alpha \lambda/\mu} - 1).$$

4. The Probability That the Stock Exceeds a Given Level

We now derive an expression for $\pi_x(t_1, t_2) = P\{X(t) > x, \text{ for all } t \in [t_1, t_2]\}$. Since the result is trivial if $x \ge \alpha$, we consider only the case when $x < \alpha$. Observe that X(t) > x for all $t \in [t_1, t_2]$ if and only if $X(t_1) > x$ and the first passage time from $X(t_1)$ to x is greater than $t_2 - t_1$. Let S_{y-x} denote the first passage time from state y to state x, then

$$\pi_x(t_1, t_2) = P\{X(t_1) > x, S_{X(t_1)} - x > t_2 - t_1\}$$

= $\int_x^\beta P\{S_{y-x} > t_2 - t_1 | X(t_1) = y\} dF(y, t_1)$

by conditioning on $X(t_1)$. Let $L_x^y(t)$ denote the distribution function of S_{y-x} . By an argument similar to that of the previous section, it can be shown that

$$L_x^y(t) = D^{(0)}(\mu t + x - y)e^{-\lambda((\alpha \wedge y) - x)/\mu} + \sum_{n=1}^{\infty} D_x^{(n)}(\mu t + x - y)(1 - e^{-\lambda((\alpha \wedge y) - x)/\mu}) e^{-\lambda(\alpha - x)/\mu}(1 - e^{-\lambda(\alpha - x)/\mu})^{n-1},$$

where

$$D_x(y) = \begin{cases} 0, & \text{for } y < \beta - \alpha \\ \frac{1 - e^{-\lambda(y - \beta + \alpha)/\mu}}{1 - e^{-\lambda(\alpha - x)/\mu}}, & \text{for } \beta - \alpha < y \le \beta - x \\ 1, & \text{for } y > \beta - x. \end{cases}$$

Summarizing the foregoing, we see that

$$\pi_x(t_1, t_2) = \int_x^\beta L_x^y(t_2 - t_1) dF(y, t_1).$$

5. The Stationary Case

In this section, we consider the case where the distribution function of X(t) does not depend on time t, that is, $\partial F(x,t)/\partial t = 0$. Notice that this stationary distribution is the same as the equilibrium distribution $F(x) = \lim_{t\to\infty} F(x,t)$ (c.f. Baxter and Lee [1]). From the equation (2.1), it follows that

$$\mu \frac{d}{dx} F(x) - \lambda F(x) = 0, \quad \text{for} \quad 0 \le x < \alpha$$
(5.1)

$$\mu \frac{d}{dx} F(x) - \lambda F(\alpha) = 0, \quad \text{for} \quad \alpha \le x < \beta$$
(5.2)

Applying the key renewal theorem to $F(\alpha, t)$ obtained in Lemma 2.1, we see that

$$F(\alpha) = \frac{\mu}{\mu + \lambda(\beta - \alpha)}.$$
(5.3)

Hence, solving the equations (5.1) and (5.2) with the boundary condition given by the equation (5.3), we obtain

$$F(x) = \frac{\mu e^{\lambda(x-\alpha)/\mu}}{\mu + \lambda(\beta - \alpha)}, \quad \text{for} \quad 0 \le x < \alpha, \quad \text{and}$$

$$F(x) = \frac{\mu - \alpha\lambda + \lambda x}{\mu + \lambda(\beta - \alpha)}, \quad \text{for} \quad \alpha \le x < \beta.$$

From the above stationary distribution, it can be also shown that the average level of the inventory over an infinite horizon is given by

$$\frac{1}{\mu + \lambda(\beta - \alpha)} [\alpha \mu + \frac{\lambda(\beta^2 - \alpha^2)}{2} - \mu^2 (1 - e^{-\alpha\lambda/\mu})/\lambda].$$

6. The Optimal Policy with Respect to α

In this section, we show that there exists a unique α which minimizes the average cost per unit time over an infinite horizon, after assigning costs to the inventory, the cost per unit time of the inventory being empty, C_1 say, and the cost of keeping a unit per unit time, C_2 say.

To calculate $C(\alpha)$, the average cost per unit time over an infinite horizon, we define as a cycle the interval between two successive points where the inventory is replenished up to β . Notice again that the sequence of such points forms an embedded renewal process. The duration of a generic interval is denoted T^* . It can be shown that the total cost during a cycle is given by

$$C_2 \int_0^{(\beta-\alpha)/\mu+T} (\beta-\mu x) dx, \quad \text{if} \quad T < \alpha/\mu$$
$$C_1(T-\alpha/\mu) + C_2 \frac{\beta^2}{2\mu}, \qquad otherwise,$$

where T is an exponential random variable with parameter λ . Hence, the expected total cost in a cycle can be obtained by conditioning on T,

$$\hat{C}(\alpha) = C_1 \int_{\alpha/\mu}^{\infty} (t - \alpha/\mu) \lambda e^{-\lambda t} dt + C_2 \int_0^{\alpha/\mu} \int_0^{(\beta - \alpha)/\mu + t} (\beta - \mu x) dx \lambda e^{-\lambda t} dt + C_2 \int_{\alpha/\mu}^{\beta} \frac{\beta^2}{2\mu} \lambda e^{-\lambda t} dt = C_1 e^{-\alpha\lambda/\mu}/\lambda + C_2 (\frac{\beta^2}{2\mu} - \frac{\alpha^2}{2\mu} + \frac{\alpha}{\lambda} + \frac{\mu}{\lambda^2} e^{-\alpha\lambda/\mu} - \frac{\mu}{\lambda^2}).$$

Since $C(\alpha) = \hat{C}(\alpha)/E(T^*)$ and $E(T^*) = ((\beta - \alpha)/\mu + 1/\lambda)$, it follows that

$$C(\alpha) = \frac{1}{(\beta - \alpha)\lambda + \mu} [C_1 \mu e^{-\alpha\lambda/\mu} + C_2 (\beta^2 \lambda^2 - \alpha^2 \lambda^2 + 2\alpha\mu\lambda + 2\mu^2 e^{-\alpha\lambda/\mu} - 2\mu^2)/2\lambda].$$

Theorem 6.1. If $C_1 \leq C_2\beta/2$, then $C(\alpha)$ is minimized at $\alpha = 0$, if $C_1 \geq C_2\mu(e^{\lambda\beta/\mu}-1)/\lambda$, then $C(\alpha)$ is minimized at $\alpha = \beta$, otherwise, there exists a unique α^* , $0 < \alpha^* < \beta$, which minimized $C(\alpha)$.

Proof. First, $C'(\alpha)$ is given by

$$C'(\alpha) = \frac{-\lambda(\beta - \alpha)}{((\beta - \alpha)\lambda + \mu)^2} [(C_1\lambda + \mu C_2)e^{-\alpha\lambda/\mu} + C_2\alpha\lambda/2 - C_2\beta\lambda/2 - C_2\mu]$$

=
$$\frac{-\lambda(\beta - \alpha)}{((\beta - \alpha)\lambda + \mu)^2} [A_1(\alpha) - A_2(\alpha)],$$

where
$$A_1(\alpha) = (C_1\lambda + C_2\mu)e^{-\alpha\lambda/\mu}$$
 and
 $A_2(\alpha) = -C_2\alpha\lambda/2 + C_2\beta\lambda/2 + C_2\mu.$

Notice that $A_1(\alpha)$ is an exponential function of α and $A_2(\alpha)$ is a linear function of α . There are three cases to consider : (i) when $C_1 \leq C_2 \beta/2$.

Since $A_1(0) \leq A_2(0)$ and $A_1(\beta) \leq A_2(\beta)$, $A_1(\alpha) \leq A_2(\alpha)$, for all $0 \leq \alpha \leq \beta$. (ii) when $C_2\beta/2 < C_1 < C_2\mu(e^{\lambda\beta/\mu} - 1)/\lambda$.

Since $A_1(0) > A_2(0)$ and $A_1(\beta) < A_2(\beta)$, there exists a unique $\alpha^*, 0 < \alpha^* < \beta$, which satisfies that $C'(\alpha) = 0$, and $C(\alpha)$ is minimized at this α^* . (iii) when $C_1 \ge C_2 \mu (e^{\lambda \beta/\mu} - 1)/\lambda$. For any $0 \leq \alpha \leq \beta$,

$$A_{1}(\alpha) = (\lambda C_{1} + C_{2}\mu)e^{-\alpha\lambda/\mu}$$

$$\geq C_{2}\mu e^{\lambda(\beta-\alpha)/\mu}$$

from the condition that $C_{1} \geq C_{2}\mu(e^{\lambda\beta/\mu}-1)/\lambda$

$$\geq C_{2}\mu(\lambda(\beta-\alpha)/\mu+1)$$

Since $e^{x} \geq x+1$ for $x \in R$

$$= -C_{2}\alpha\lambda + C_{2}\beta\lambda + C_{2}\mu$$

$$\geq -C_{2}\alpha\lambda/2 + C_{2}\beta\lambda/2 + C_{2}\mu$$

$$= A_{2}(\alpha).$$

Thus $C'(\alpha) \leq 0$, for all $0 \leq \alpha \leq \beta$.

References

- Baxter, L. A. and Lee, E. Y.(1987), An Inventory with Constant Demand and Poisson Restocking, Probability in the Engineering and Informational Sciences, 1, 203-210.
- [2] Colton, D. (1988). Partial Differential Equations, New York: Random House.

DEPARTMENT OF MATHEMATICS AND STATISTICS, WRIGHT STATE UNIVERSITY, DAYTON, OHIO 45435, U.S.A.