OSCILLATORY PROPERTIES OF VOLTERRA INTEGRAL EQUATIONS

Hiroshi Onose

1. Introduction

Consider the Volterra integral equation with advanced argument

$$x(t) = f(t) - \int_0^t a(t,s)g(s,x(\tau(s)))ds, \quad t \ge 0.$$
(1)

In (1), $f: [0, \infty) \to R$ is continuous, $g: [0, \infty) \times R \to R$ is continuous, $\tau(t)$ is continuous, nondecreasing and $\tau(t) \ge t$ on $[0, \infty)$ and $a: [0, \infty) \times [0, \infty) \to R$ is such that a(t, s) = 0 if s > t, $a(t, s) \ge 0$ for $0 \le t < \infty$ and $0 \le s \le t$. Let a(t, s) be continuous for $0 \le t < \infty$ and $0 \le s \le t$. We consider only the solutions of (1) which exist and continuous on $[0, \infty)$, and are nontrivial in any neighbourhood of infinity. A solution x(t) of (1) is said to be oscillatory if each of the sets $\{t \ge 0 | x(t) > 0\}$ and $\{t > 0 | x(t) < 0\}$ is unbounded; it is said to be weakly oscillatory if the set $\{t \ge 0 | x(t) = 0\}$ is unbounded; and it is said to be nonoscillatory if it is not weakly oscillatory. We note that this notion of weakly oscillatory is usually called oscillatory (Cf. [1]), but here we use the definition of oscillatory as same as in [2]. In this paper, we propose some criteria sufficient to imply all solutions of (1) are weakly oscillatory, which is not considered in [2].

2. Results

Theorem 1. Let $\limsup_{t\to\infty} f(t) = M$ and $\liminf_{t\to\infty} f(t) = N$, where M > 0 and N < 0 are constants. Let xg(t,x) > 0 if $x \neq 0$ and the function $h_{\sigma}(t) = \int_0^{\sigma} a(t,s) ds$ satisfies $\lim_{t\to\infty} h_{\sigma}(t) = 0$ for every fixed $\sigma > 0$. Then all solutions of (1) are weakly oscillatory.

Received July 28, 1988.

Proof. Let x(t) be a not weakly oscillatory solution of (1) on $[0, \infty)$. Then there exists a T > 0 such that x(t) > 0 or < 0 for sufficiently large t. Suppose that x(t) > 0 for $t \ge T > 0$. From (1) and $\tau(t) \ge t$, we obtain $x(\tau(t)) > 0$ on $t \ge T$ and

$$0 < x(t) = f(t) - \int_{0}^{t} a(t,s)g(s, x(\tau(s)))ds$$

$$= f(t) - \int_{0}^{T} a(t,s)g(s, x(\tau(s)))ds$$

$$- \int_{T}^{t} a(t,s)g(s, x(\tau(s)))ds$$

$$\leq f(t) - \int_{0}^{T} a(t,s)g(s, x(\tau(s)))ds$$

$$\leq f(t) + L \int_{0}^{T} a(t,s)ds, \quad T \leq t < \infty$$

where $L = \sup_{t \in [0,T]} |g(t, x(\tau(t)))|.$
(2)

This (2), $\liminf_{t\to\infty} f(t) = N < 0$ and $\lim_{t\to\infty} h_T(t) = \int_0^T a(t,s)ds = 0$ lead a contradiction to x(t) > 0. On the other hand, suppose x(t) < 0 for $t \ge T^* > 0$. From (1), we have

$$\begin{array}{lll} 0 > x(t) &=& f(t) - \int_0^{T^*} a(t,s)g(s,x(\tau(s)))ds \\ && - \int_{T^*}^t a(t,s)g(s,x(\tau(s)))ds \\ &\geq& f(t) - \int_0^{T^*} a(t,s)g(s,x(\tau(s)))ds \\ &\geq& f(t) - L^* \int_0^{T^*} a(t,s)ds, \quad t \ge T^*, \end{array}$$

where $L^* = \sup_{t \in [0,T^*]} |g(t, x(\tau(t)))|$. This inequality, $\limsup_{t \to \infty} f(t) = M > 0$ and $\lim_{t \to \infty} h_{T^*}(t) = 0$ lead a contradiction to x(t) < 0.

Example 1. Consider the equation

$$x(t) = f(t) - \int_0^t a(t,s)g(s,x(\tau(s)))ds$$
(3)

where $f(t) = \frac{t}{t^2+1} \{-(t+2\pi)\cos t + \sin t + 2\pi\} + (\frac{t\sin t}{t^2+1})^{\frac{1}{5}}, a(t,s) = 0$ if $s > t, a(t,s) = \frac{t}{t^2+1} \{(s+2\pi)^2 + 1\}^2$ for $0 \le t < \infty$ and $0 \le s \le t$,

 $\tau(s) = s + 2\pi$ and $g(s, x(\tau(s))) = \{(s + 2\pi)^2 + 1\}^{-1} \times (x(s + 2\pi))^5$. Since equation (3) satisfies all conditions of Theorem 1, all solutions of (3) are weakly oscillatory. Such an oscillating solution of (3) is $x(t) = (\frac{t \sin t}{t^2 + 1})^{\frac{1}{5}}$.

Remark. Example 1 is not examined by the results of [2].

Theorem 2. Let $\lim_{t\to\infty} f(t) = 0$ or $f(t) \equiv 0$, and xg(t,x) > 0 if $x \neq 0$. If the function $h_{\sigma}(t)$ as in Theorem 1, satisfies $\lim_{t\to\infty} h_{\sigma}(t) = 0$ for every fixed $\sigma > 0$, then every solution x(t) of (1) is weakly oscillatory or $\lim_{t\to\infty} x(t) = 0$. Proof. Let x(t) be a nonoscillatory solution of (1). Suppose that x(t) > 0for $t \geq T > 0$. From (1) and $\tau(t) \geq t$, we have

$$0 < x(t) = f(t) - \int_0^T a(t,s)g(s,x(\tau(s)))ds$$

$$-\int_T^t a(t,s)g(s,x(\tau(s)))ds$$

$$\leq f(t) - \int_0^T a(t,s)g(s,x(\tau(s)))ds$$

$$\leq f(t) + L \int_0^T a(t,s)ds, \quad T \le t < \infty,$$

where $L = \sup_{t \in [0,T]} g(t,x(\tau(t))).$
(4)

Since $\lim_{t\to\infty} h_T(t) = \lim_{t\to\infty} \int_0^T a(t,s)ds = 0$, $\lim_{t\to\infty} f(t) = 0$ and (4), we obtain $\lim_{t\to\infty} x(t) = 0$. Let x(t) < 0 for $t \ge T^* > 0$. So

$$\begin{array}{lll} 0 > x(t) & \geq & f(t) - \int_0^{T^*} a(t,s)g(s,x(\tau(s)))ds \\ & \geq & f(t) - L^* \int_0^{T^*} a(t,s)ds, \\ & & \text{where } L^* = \sup_{t \in [0,T^*]} g(t,x(\tau(t))). \end{array}$$
(5)

From (5), we have $\lim_{t\to\infty} x(t) = 0$.

Example 2. Consider the integral equation

$$x(t) = f(t) - \int_0^t a(t,s)g(s,x(s))ds$$
(6)

where $f(t) = \frac{t}{\sqrt{t^3+1}} + e^{-t}$, a(t,s) = 0 if s > t, $a(t,s) = \frac{e^{2s}}{\sqrt{t^3+1}}$ for $0 \le t < \infty$ and $0 \le s \le t$, and $g(s, x(s)) = e^s(x(s))^3$. For equation (6), all conditions of Theorem 2 are satisfied, so that every nonoscillatory solution x(t) of (6) satisfies $\lim_{t\to\infty} x(t) = 0$. Such a solution of (6) is $x(t) = e^{-t}$.

Remark. Theorem 2 is concerned with [2, Theorem 3.6]. But we treat with the case that the existence of $\lim_{t \to \infty} x(t)$ is not assumed.

We note that these theorems 1 and 2 are extended at once to the more general integral equation of Volterra type (Cf. [3], [4])

$$x(t) = f(t) - \sum_{i=1}^{n} \int_{0}^{t} a_{i}(t,s) g_{i}(s, x(\tau_{i}(s))) ds, \quad t \ge 0$$
(7)

In (7), $f:[0,\infty) \to R$ is continuous, $g_i:[0,\infty) \times R \to R$ is continuous for every $i, 1 \leq i \leq n$ and $a_i:[0,\infty) \times [0,\infty) \to R$ is such that $a_i(t,s) = 0$ if $s > t, a_i(t,s) > 0$ for $0 \leq t < \infty$ and $0 \leq s \leq t$, for every $i, 1 \leq i \leq n$. Let $a_i(t,s)$ be continuous for $0 \leq t < \infty$ and $0 \leq s \leq t$ for every $i, 1 \leq i \leq n$, and $\tau_i(t)$ be continuous, nondecreasing and $\tau_i(t) \geq t$ on $[0,\infty)$, for every $i, 1 \leq i \leq n$.

Theorem 3. Let $\limsup_{t\to\infty} f(t) = M > 0$ and $\liminf_{t\to\infty} f(t) = N < 0$, where M and N are constants. Let $xg_i(t, x) > 0$ if $x \neq 0$ for every $i, 1 \leq i \leq n$, and the function $i - h_{\sigma}(t) = \int_0^{\sigma} a_i(t, s) ds$ satisfies $\lim_{t\to\infty} i - h_{\sigma}(t) = 0$ for every fixed $\sigma > 0$ and $i, 1 \leq i \leq n$. Then all solutions of (7) are weakly oscillatory.

The proof is proceeded as same as in Theorem 1.

References

- G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, INC, New York and Basel, 1987.
- [2] N. Parhi and Niyati Misra, On oscillatory and nonoscillatory behaviour of solutions of Volterra integral equations, Jour. Math. Anal. Appl. 94(1983), 137-149.
- [3] M. Rama Mohana Rao and P. Srimivas, Asymptotic behavior of solutions of Volterra integro-differential equations, Proc. Amer. Math. Soc. 94(1985), 55-60.
- [4] V. Sree Hari Rao, On random solutions of Volterra-Fredholm integral equations, Pacific J. Math. 108(1983), 397-405.

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY, MITO 310, JAPAN.