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OSCILLATORY PROPERTIES OF VOLTERRA
INTEGRAL EQUATIONS

Hiroshi Onose

1. Introduction

Consider the Volterra integral equation with advanced argument

o(t) = (1) = [ at,$)g(s,(r(s))ds, 120, (1)

In (1), f : [0,00) — R is continuous, g : [0,00) x R — R is continuous,
7(t) is continuous, nondecreasing and 7(t) > ¢ on [0,00) and a : [0,00) X
[0,00) — R is such that a(t,s) =0if s > ¢, a(t,s) > 0 for 0 < ¢ < oo and
0 < s <t. Let a(t,s) be continuous for 0 <t < oo and 0 < s < t. We
consider only the solutions of (1) which exist and continuous on [0, c0),
and are nontrivial in any neighbourhood of infinity. A solution z(t) of
(1) is said to be oscillatory if each of the sets {t > 0|z(¢) > 0} and
{t > 0]z(t) < 0} is unbounded; it is said to be weakly oscillatory if the
set {t > 0|z(t) = 0} is unbounded; and it is said to be nonoscillatory if
it is not weakly oscillatory. We note that this notion of weakly oscillatory
is usually called oscillatory (Cf. [1]), but here we use the definition of
oscillatory as same as in [2]. In this paper, we propose some criteria
sufficient to imply all solutions of (1) are weakly oscillatory, which is not
considered in [2].

2. Results

Theorem 1. Let limsup,_ f(t) = M and iminf,_. . f(t) = N, where
M > 0 and N < 0 are constants. Let zg(t,z) > 0 if ¢ # 0 and the
Junction h,(t) = [; a(t,s)ds satisfies !lim h,(t) = 0 for every fired o > 0.

Then all solutions of (1) are weakly oscillatory.
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Proof. Let z(t) be a not weakly oscillatory solution of (1) on [0,00). Then
there exists a 7" > 0 such that z(t) > 0 or < 0 for sufficiently large t.
Suppose that z(t) > 0 for ¢t > T > 0. From (1) and 7(¢) > t, we obtain
z(7(t)) >0ont > T and

0<a(t) = f(t)- [ alt,s)g(s,z(r(s))ds
T
= f(t)= [ alt,)g(s,z(r(s))ds
/;r a(t,s)g(s,z(r(s)))ds
T
10 = [ alt, $)g(s,a(r(s))ds (2)

T
(0 + L/ a(t,s)ds, T <t<oo
0
where L = sup [g(t,z(7(1)))].
te[0,7]

IA

IN

i
This (2), liminf;_.f(f) = N < 0 and tlim hy(t) = f a(t,s)ds = 0 lead
— 00 0
a contradiction to z(f) > 0. On the other hand, suppose z(t) < 0 for
t>T" > 0. From (1), we have

Te

0>a(t) = f(t)= [ alt,s)gls,a(r(s))ds

—j:r' a(t,s)g(s,z(7(s)))ds
T
> f(0)= [ alt,s)g(s,a(r(s)ds
o~

> f(t) — L*/O a(t,s)ds, t>T"

where L* = s[ug.]|g(t,a:(r(t)))|. This inequality, limsup,_, . f(t) = M > 0

and tlim hr+(t) = 0 lead a contradiction to z(t) < 0.

Example 1. Consider the equation

2(t) = 1)~ [ alt,$)g(s,2(r(s)))ds 3)
where f(t) = z{—(t + 27)cost + sint + 27} -i—(i—;iﬁ)];, a(t,s) = 0 if
s>ta(t): arlls+2r)? +1}? for0 <t < occand 0 < 5 < ¢,
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7(s) = s+ 27 and g(s,z(7(s))) = {(s + 27)* + 1} 7! x (z(s + 27))*. Since
equation (3) satisfies all conditions of Theorem 1, all solutions of (3) are

weakly oscillatory. Such an oscillating solution of (3) is z(¢) = (:;’;’_‘1‘)5

Remark. Example 1 is not examined by the results of [2].

Theorem 2. Let tllglof(t) =0 or f(t) =0, and zg(t,z) >0 ifz £ 0. If
the function h,(t) as in Theorem 1, satisfies tl_i_{gh,(t) =0 for every fized
o > 0, then every solution z(t) of (1) is weakly oscillatory or tli’rglox(t) = .
Proof. Let z(t) be a nonoscillatory solution of (1). Suppose that z(t) > 0
for t > T > 0. From (1) and 7(t) > ¢, we have

7
0<a(t) = () [ a(t,s)g(s,(r(s))ds
— [ att,s)g(s,a(r(s)ds
i/
70 = [ at,s)g(s, z(r(s))ds (4)

q
() + L/ a(t,s)ds, T <t< oo,
4]

where L = sup g(t,z(7(t))).
te(0,T

IA

IA

-

Since Jimhr(t) = Jim [ a(t,s)ds = 0, Jim f(t) = 0 and (4), we obtain
— 00 -+ 00 0 — 00

l!lirgzz:(t) =0. Let z(t) <0 fort > T* > 0. So

-
0>2(t) > f(t)— ]D a(t, 8)g(s, z(r(s)))ds

-

> fO)-L [ alt,s)ds, (5)
where L* = sup g(t,z(7(t)))-
te[0,7'*]

From (5), we have tIim:n:(t) ==
Example 2. Consider the integral equation
t
o(t) = £(8) = [ alt,)g(s,2(s))ds (6)

where f(t) = b + ¢, alt,s) = 0if s> 1,
a(t,s)zvjmforOSt<ooand0§sSt,
and g(s, z(s)) = e*(z(s))>.
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For equation (6), all conditions of Theorem 2 are satisfied, so that
every nonoscillatory solution z(t) of (6) satisfies tl_i.[?o z(t) = 0. Such a

solution of (6) is z(t) = e™*.
Remark. Theorem 2 is concerned with [2, Theorem 3.6]. But we treat

with the case that the existence of tlim z(t) is not assumed.
—00

We note that these theorems 1 and 2 are extended at once to the more
general integral equation of Volterra type (Cf. [3],[4])

z(t) = f(t) - i:jut a;(t,s)gi(s,z(7i(s)))ds, t>0 (7)

In (7), f:[0,00) — R is continuous, g; : [0,00) x R — R is continuous for
every i, | << n and q;:[0,00) x [0,00) = R is such that a;({,s) = 0 if
s>t at,s) >0for0<t<ooand 0<s<tforeveryi, 1 <:<n. Let
a;(t,s) be continuous for 0 <t < oo and 0 < s <t forevery:, 1 <:<n,
and 7;(t) be continuous, nondecreasing and 7;(t) > t on [0, 00), for every
i,1<i<n.

Theorem 3. Let limsup,_ . f(t) = M > 0 and liminf, f(f) = N <0,
where M and N are constants. Let zg;(t,z) > 0 ifz # 0 for every:, 1 <
t < n, and the function 1 — h,(t) = [§ a;(t,s)ds salisfies tlil‘gloi —h,(t)=0
for every fired o > 0 and ¢, 1 < 1 < n. Then all solutions of (7) are
weakly oscillatory.

The proof is proceeded as same as in Theorem 1.
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