ON SUBSOCLES OF S_{2}-MODULES II

M. Zubair Khan, Mofeed Ahmad and Halim Ansari

Introduction

In recent years a new theory for a special module called S_{2}-module, has been developed and the well known results of torsion abelian groups have been shown to be valid for this module (see [1,2,6,7,8,9,10,11,12]). In [14], a submodule N of an S_{2}-module M is called h-pure if $N \cap H_{n}(M)=H_{n}(N)$ for all $n>0$. It is very natural to consider the case when $N \cap H_{n}(M) \subseteq$ $H_{k}(N)$, where n and k are related by some rules. In this connection, J. D. Moore [3] got a useful technique and introduced the concept of imbedded subgroups of primary abelian groups. The main purpose of this paper is to generalize the concept of h-purity of submodules and to make a rigourous study of this concept and their consequences. This paper is in the continuation of [6].

The paper consists of four sections. In Section 1, we state preliminary results needed for subsequent sections. Section 2 deals with a special type of imbedded submodule called as 'regularly imbedded submodule'. We have shown that an important result of P. Hill and C. Megibben [13, Theorem 1] holds for this module, namely, "An h-neat submodule of an S_{2}-module M supported by an h-dense subsocle of M is h-pure and h dense in $M "$ (Corollary 2.3). In Section 3, we study ℓ-quasi-complete modules and obtain a characterization for this (Theorem 3.14). In Section 4, we introduce the concept of minimal ℓ-imbedding and obtain different characterizations for its existence in an S_{2}-module with certain property.

1. Preliminaries

The notations and terminology have been adopted from [2,6,11,12]. As done by J. D. Moore [3] for groups we define an ℓ-imbedded submodule as :

Received March 2, 1987.

A submodule N of an S_{2}-module M is called ℓ-imbedded if there exists a non-decreasing function $\ell: Z^{+} \rightarrow Z^{+}$such that $N \cap H_{\ell(n)}(M) \subseteq H_{n}(N)$ for each $n \in Z^{+}$. Trivially, ℓ-imbedded submodules are h-pure.

Now, we state some basic results whose proofs are trivials.
M will be an S_{2}-module throughout this section.
Lemma 1.1. Let $K \subseteq N$ be submodules of M such that K is ℓ-imbedded in M, then K is ℓ-imbedded in N.

Lemma 1.2. If K is ℓ_{1}-imbedded in N and N is ℓ_{2}-imbedded in M. Then K is $\ell_{2} \circ \ell_{1}$-imbedded in M.

Lemma 1.3. Let $K \subseteq N$ be submodules of M such that N is ℓ-imbedded in M, then N / K is ℓ-imbedded in M / K.

Lemma 1.4. If N is ℓ-imbedded in M, then it is $\ell^{\prime} \circ \ell$-imbedded for every ℓ^{\prime}.

Lemma 1.5. Let $K \subseteq N$ be submodules of M such that K is ℓ_{1}-imbedded in M and N / K is ℓ_{2}-imbedded in M / K. Then N is $\ell_{2} \circ \ell_{1}$-imbedded in M.

Lemma 1.6. Let N_{1} and N_{2} be submodules of M.
(a) If $N_{1} \cap N_{2}$ is ℓ-imbedded in N_{1}, then N_{2} is ℓ-imbedded in $N_{1}+N_{2}$.
(b) If $N_{1}+N_{2}$ is ℓ-imbedded in M and $N_{1} \cap N_{2}$ is ℓ-imbedded in N_{1}, then
N_{2} is $\ell \circ \ell$-imbedded in M.
(c) If $N_{1}+N_{2}$ and $N_{1} \cap N_{2}$ are ℓ-imbedded in M, then N_{1} and N_{2} are $\ell \circ \ell$-imbedded in M.
(d) If $N_{1} \cap N_{2}$ is ℓ-imbedded in $N_{1}+N_{2}$, then N_{1} and N_{2} are $\ell \circ \ell$-imbedded in $N_{1}+N_{2}$.

Corollary 1.7. If $M / K=N / K \oplus T / K$ such that K is ℓ-imbedded in N, then T is ℓ-imbedded in M.

Lemma 1.8. For an ℓ-imbedded submodule N of $M, N \cap M^{1}=N^{1}$.
Corollary 1.9. If $N \subseteq M^{1}$, then N is imbedded in M if and only if N is h-divisible.

Lemma 1.10. If N is an imbedded submodule of M, then \bar{N} is imbedded in M if and only if $(M / N)^{1}$ is h-divisible, where \bar{N} is the closure of N defined as $\bar{N} / N=(M / N)^{1}$.

Lemma 1.11. For a submodule N of $M, \bar{N}=\cap_{n=1}^{\infty}\left(N+H_{n}(M)\right)$.

Lemma 1.12. A submodule N of M is h-dense in M if and only if $\bar{N}=M$.

2. Regularly imbedded submodules

A submodule N of an S_{2}-module M is called regularly imbedded in M with index k, if $N \cap H_{k+n}(M) \subseteq H_{n}\left(N \cap H_{k}(M)\right)$ for every n.

Evidently, if N is regularly imbedded with index k, then $N \cap H_{k+n}(M) \subseteq$ $H_{n}(N)$ gives that the regularly imbedded submodules are ℓ-imbedded for some $\ell: Z^{+} \rightarrow Z^{+}$, therefore, the results of Section 1 can be suitably carried over to regularly imbedded submodules. Moreover, the regularly imbedded submodules of index zero are exactly the h-pure submodules. Also, we can easily prove the following:

Proposition 2.1. Let N be a regularly imbedded submodule of an S_{2} module M with index 1. If N is h-neat in M then it is h-pure.

We recall from [2] that a subsocle S of an S_{2}-module M is h-dense in $\operatorname{soc}(M)$, if $\operatorname{soc}(M)=S+\operatorname{soc}\left(H_{n}(M)\right)$ for every n.

Now, we prove the following proposition which is a generalizations of a result of J. D. Moore [3, Proposition 3.5].

Proposition 2.2. Let N be a submodule of an S_{2}-module M such that $\operatorname{soc}(N)$ is h-dense in $\operatorname{soc}(M)$. If $N \cap H_{m+1}(M) \subseteq H_{1}(N)$ for some m, then
(a) N is regularly imbedded with index m in M.
(b) $H_{m}(M) \subseteq \bar{N}$.

Proof. (a) Firstly, we show that $N \cap H_{m+1}(M) \subseteq H_{1}(N \cap(\operatorname{soc}(M)+$ $\left.H_{m}(M)\right)$). For this, let $x \in N \cap H_{m+1}(M)$, be a uniform element then there exists a uniform element $y \in M$ such that $x \in y R$ and $d(y R / x R)=m+1$. Also, $x \in H_{1}(N)$ implies that there exists a uniform element $z \in N$ such that $x \in z R$ and $d(z R / z R)=1$. Let $w R / x R=\operatorname{soc}(y R / x R)$, then $d(w R / x R)=1$. Hence, appealing to the condition (II) of the S_{2}-module, we get $e(z-w) \leq d(z R / x R)=1$, and thus, $z-w \in \operatorname{soc}(M)$. Therefore, $z \in \operatorname{soc}(M)+H_{m}(M)$, and so $x \in H_{1}\left(N \cap\left(\operatorname{soc}(M)+H_{m}(M)\right)\right)$, which proves that $N \cap H_{m+1}(M) \subseteq H_{1}\left(N \cap\left(\operatorname{soc}(M)+H_{m}(M)\right)\right)$. Now, we prove that $N \cap H_{m+n}(M) \subseteq H_{n}\left(N \cap H_{m}(M)\right)$ for every n. Since, $\operatorname{soc}(N)$ is h dense in $\operatorname{soc}(M)$, we have $N \cap\left(\operatorname{soc}(M)+H_{m}(M)\right) \subseteq N \cap\left(\operatorname{soc}(N)+H_{m}(M)\right)$ $=\operatorname{soc}(N)+N \cap H_{m}(M)$ so, $N \cap H_{m+1}(M) \subseteq H_{1}\left(\operatorname{soc}(N)+N \cap H_{m}(M)\right)$ $=H_{1}\left(N \cap H_{m}(M)\right)$. Let us assume that $N \cap H_{m+n}(M) \subseteq H_{n}\left(N \cap H_{m}(M)\right)$
for some n. Then, as done above, it is easy to show that

$$
\begin{aligned}
N \cap H_{m+n+1}(M) & \subseteq H_{1}\left(N \cap\left(\operatorname{soc}(M)+H_{m+n}(M)\right)\right) \\
& \subseteq H_{1}\left(\operatorname{soc}(N)+N \cap H_{m+n}(M)\right) \\
& =H_{1}\left(N \cap H_{m+n}(M)\right) \\
& \subseteq H_{n+1}\left(N \cap H_{m}(M)\right), \text { by assumption. }
\end{aligned}
$$

Hence, the result follows by induction and N is regularly imbedded with index m.
(b) If $x \in \operatorname{soc}\left(H_{m}(M)\right)$ is a uniform element, then trivially, using Lemma $1.11, x \in \bar{N}$. Let us assume that all the uniform elements of $H_{m}(M)$ of exponent at most k belong to \bar{N} and let $y \in H_{m}(M)$ be a uniform element of exponent $k+1$. Then there exists a uniform element $z \in H_{m}(M)$ such that $z \in y R$ and $d(y R / z R)=1$. So $z \in H_{m+1}(M)$. Also, $e(z)=k$, so $z \in \bar{N}$, by assumption. So that $z=u+t$, where $u \in N$ and $t \in H_{m+n+1}(M)$ for every n. Then $u=z-t \in H_{m+1}(M)$ and so $u \in N \cap H_{m+1}(M) \subseteq H_{1}\left(N \cap H_{m}(M)\right)$, by (a). Therefore, $z \in$ $H_{1}\left(N \cap H_{m}(M)+H_{m+n}(M)\right)$. Hence, there exists a uniform element $w \in\left(N \cap H_{m}(M)+H_{m+n}(M)\right)$ such that $z \in w R$ and $d(w R / z R)=1$. Hence, appealing to the condition (II), we get $e(y-w) \leq d(y R / z R)=1$. i.e. $y-w \in \operatorname{soc}(M)$. Thus, $y \in \operatorname{soc}(M)+N+M_{m+n}(M)$ for every n. Hence, $y \in \bar{N}$, as $\operatorname{soc}(N)$ is h-dense in $\operatorname{soc}(M)$. The result follows by induction.

We recall from [2] that an S_{2}-module M is called an S_{3}-module if it further satisfies one more conditions:
(III) For every finitely generated submodule N of $M, R / \operatorname{ann}(N)$ is right Artinian.

In [2], we have generalized a result of P. Hill and C. Megibben [15, Theorem 1] for S_{3}-modules. As an application of the Proposition 2.2, we further improve that for S_{2}-modules as follows:

Corollary 2.3. An h-neat submodule N of an S_{2}-module M supported by an h-dense subsocle of M is h-pure and h-dense in M.

3. Subsocles and ℓ-quasi-completeness

In [6] we have made an study of quasi-complete S_{2}-modules. Here we introduce ℓ-quasi-complete S_{2}-modules and get a characterization.

Definition 3.1. An S_{2}-module M is called ℓ-quasi- complete if the closure
\bar{N} of every ℓ-imbedded submodule N of M is an imbedded submodule of M.

As it is remarked earlier that ℓ-imbedded submodules are exactly the h-pure submodules, hence quasi-complete S_{2}-modules are ℓ-quasicomplete. Apparently, ℓ-quasi-complete S_{2}-modules do not seem to be quasi-complete, but the following proposition shows that ℓ-quasi-complete S_{2}-modules are quasi-complete. The proof, being analogous to [3, Proposition 2.9], is omitted.

Proposition 3.2. Let N be an ℓ-imbedded submodule of an S_{2}-module M. If \bar{N} is imbedded in M, then \bar{N} is ℓ-imbedded.

As defined in [6], an S_{2}-module M is called separable if it has no uniform element of infinite height. Also, an S_{2}-module M is reduced if 0 is its only h-divisible submodule.

The following proposition can be proved easily.
Proposition 3.3. A reduced ℓ-quasi-complete S_{2}-module is separable.
Definition 3.4. An ℓ-imbedded submodule of an S_{2}-module M is said to be strongly ℓ-imbedded if every subsocle S of M containing $\operatorname{soc}(N)$ supports an ℓ-imbedded submodule of M containing N.

Proposition 3.5. Every ℓ-imbedded submodule of an ℓ-quasi-complete S_{2}-module is strongly ℓ-imbedded.
Proof. Let M be an ℓ-quasi-complete S_{2}-module and for any ℓ-imbedded submodule N and for any subsocle S of M containing $\operatorname{soc}(N)$, let $\mathcal{F}=$ $\{H \subseteq M \mid H$ is ℓ-imbedded in $M, N \subseteq H$ and $\operatorname{soc}(H) \subseteq S\}$. Then we can find a maximal ℓ-imbedded submodule K of M containing N such that $\operatorname{soc}(K) \subseteq S$. We assert that $\operatorname{soc}(K)=S$. Suppose on contrary that there exists a uniform element $x \in S$ such that $x \notin K$. Then $\bar{x}=x+K$ is uniform element of $(S+K) / K$. There are two cases:

Case I: If $H_{M / K}(\bar{x})=n<\infty$. Then we choose a uniform $y \in M$ such that $x \in y R$ and $d(\bar{y} R / \bar{x} R)=n$. Using [14, Lemma 1], $\bar{y} R$ is a summand of M / K, hence, is ℓ-imbedded in M / K-consequently, by Lemma 1.5, y $R+K$ is ℓ-imbedded in M. Trivially, $\operatorname{soc}(y R)=x R$ and $x R \cap K=0$, therefore, $y R \cap K=0$, and so $y R \oplus K$ is ℓ-imbedded in M such that $\operatorname{soc}(y R \oplus K) \subseteq S$, which contradicts the maximality of K.

Case II: If $H_{M / K}(\bar{x})=\infty$, then as M is ℓ-quasi-complete, we have, by Lemma $1.10,(M / K)^{1}$ to be h-divisible. Therefore, by [12, Theorem

3], $(M / K)^{1}=\oplus \sum \bar{U}_{i}$, where each \bar{U}_{i} is a uniform submodule of infinite length and $\operatorname{soc}\left(\bar{U}_{j}\right)=\bar{x} R$ for some j. We write $\bar{U}_{j}=T / K$. Now, let $z \in \operatorname{soc}(T)$ be a uniform element with $z \notin K$, then $\bar{z}=z+K$ is a uniform element of $(x R+K) / K$. Hence, $z+K=x r+K$ yields that $z \in x R+\operatorname{soc}(K)$. Therefore, $\operatorname{soc}(T)=x R \oplus \operatorname{soc}(K)$. Also, as K is $\ell-$ imbedded and T / K, being h-divisible, is ℓ-imbedded in M / K, we find that T is ℓ-imbedded in M. Thus, T is ℓ-imbedded in M containing N such that $\operatorname{soc}(T)=x R \oplus \operatorname{soc}(K) \subseteq S$, which again contradicts the maximality of K. Hence, $\operatorname{soc}(K)=S$ and the proposition follows.

Analogous to h-pure-complete modules [1], we call an S_{2}-module M to be ℓ-imbedded-complete if every subsocle of M supports an ℓ-imbedded submodule of M. Then ℓ-imbedded-complete modules are exactly the h-pure-complete modules.

The following result, analogue to [5, Cor. 74.2], can be easily deduced from Proposition 3.5.

Corollary 3.6. An ℓ-quasi-complete S_{2}-module is ℓ-imbedded-complete.
Also, we have the the following generalization of [6 , Proposition 8].
Proposition 3.7. A reduced ℓ-imbedded-complete S_{2}-module M is separable.
Proof. Using the definition of ℓ-imbedded-completeness, we get $\operatorname{soc}\left(M^{1}\right)=$ $\operatorname{soc}(K)$, for some ℓ-imbedded submodule K of M. Now, for any uniform element $x \in \operatorname{soc}(K), x \in K^{1}$ (using Lemma 1.8). Hence, by [12, Lemma 2], K is h-divisible. Hence $K=0$ and consequently, $M^{1}=0$.

Proposition 3.5 provides a necessary condition for ℓ-quasi-complete S_{2}-modules. In order to get a characterization, we prove some results on subsocles.

Proposition 3.8. Let M be an S_{3}-module and N be an ℓ-imbedded submodule of M, then $\overline{\operatorname{soc}(N)} \cap \operatorname{soc}(M)=\operatorname{soc}(\bar{N})$.
Proof. We have

$$
\begin{aligned}
\overline{\operatorname{soc}(N)} \cap \operatorname{soc}(M) & \subseteq\left(\operatorname{soc}(N)+H_{n}(M)\right) \cap \operatorname{soc}(M), \text { for all } n . \\
& =\operatorname{soc}(N)+\operatorname{soc}\left(H_{n}(M)\right), \text { for all } n . \\
& \subseteq \operatorname{soc}\left(N+H_{n}(M)\right) .
\end{aligned}
$$

Therefore, $\overline{\operatorname{soc}(N)} \cap \operatorname{soc}(M) \subseteq \operatorname{soc}(\bar{N})$. Now, to show the equality, we need only to show that $\operatorname{soc}\left(N+H_{\ell(n+1)-1}(M)\right) \subseteq \operatorname{soc}(N)+H_{n}(M)$ for every
n. Let $x \in \operatorname{soc}\left(N+H_{\ell(n+1)-1}(M)\right)$ be a uniform element, then $e(x)=1$ and $x=y+z$ where $y \in N$ and $z \in H_{\ell(n+1)-1}(M)$. If $\operatorname{ann}(x R)=P$, then $y r=-z r$ for every $r \in P$. i.e. $y P=z P$. In case $z P=z R$, we have $y P=z R$. So that for $r_{1} \in P, z=y r_{1}$, i.e. $x=y+y r_{1} \in N$ and hence $x \in \operatorname{soc}(N)$ implies that the assertion follows. Similarly, $y P=y R$ gives that $x \in H_{\ell(n+1)-1}(M) \subseteq H_{n}(M)$ and the assertion follows. So, we consider the case when $z P<z R$ and $y P<y R$. Now $z \in H_{\ell(n+1)-1}(M)$ gives that $z P \subseteq H_{\ell(n+1)}(M)$. So that $y P \subseteq N \cap H_{\ell(n+1)}(M) \subseteq H_{n+1}(N)$ which yields $y r \in H_{n+1}(N)$, for every $r \in P$. Therefore, there exists a uniform element $t \in N$ such that $y r \in t R$ and $d(t R / y r R)=n+1$. Let $\operatorname{soc}(t R / y r R)=u R / y r R$, then $d(u R / y r R)=1$. Also, $d(t R / u R)=n$ yields that $u \in H_{n}(N)$. Moreover, $y P<y R$ implies that there exists a uniform element $v \in y R$ such that $y r R \subseteq v R$ and $d(v R / y r R)=1$. Hence, appealing to the condition (II), we find that $e(v-u) \leq d(v R / y r R)=1$ and so, $v-u \in \operatorname{soc}(N)$. Now, $v=y r_{1}, r_{1} \in R, r_{1} \notin P$. Obviously, $x r_{1} R=x R$, as $e(x)=1$. So that $x=x r_{1} r_{2}, r_{2} \in R$, i.e.

$$
\begin{aligned}
x & =x r_{1} r_{2} \\
& =y r_{1} r_{2}+z r_{1} r_{2} \\
& =v r_{2}+z r_{1} r_{2} \\
& =(v-u) r_{2}+u r_{2}+z r_{1} r_{2} \in \operatorname{soc}(N)+H_{n}(M) .
\end{aligned}
$$

Hence the proposition follows.
Definition 3.9. Let S be a subsocle of an S_{2}-module M and \bar{S} be the closure of S in M. Then closure of S in $\operatorname{soc}(M)$ is given as $\bar{S} \cap \operatorname{soc}(M)$. S is called closed in $\operatorname{soc}(M)$ if $S=\bar{S} \cap \operatorname{soc}(M)$.

Proposition 3.10. Let M be an S_{3}-module and N be an ℓ-imbedded submodule of M such that $\operatorname{soc}(N)$ is closed in $\operatorname{soc}(M)$, then $\bar{N} \cap H_{\ell(1)-1}(M) \subseteq$ N.
Proof. Using the proposition 3.8 and the definition 3.9, we have $\operatorname{soc}(\bar{N})=$ $\operatorname{soc}(N)$. So that $\operatorname{soc}(\bar{N}) \cap H_{\ell(1)-1}(M) \subseteq N$. Now, let us assume that for every uniform element $x \in \bar{N} \cap H_{\ell(1)-1}(M)$ with $e(x)=k, x \in N$. Let y be a uniform element of $\bar{N} \cap H_{\ell(1)-1}(M)$ such that $e(y)=k+1$. Then there exists a uniform element $z \in \bar{N} \cap H_{\ell(1)-1}(M)$ such that $z \in y R$ and $d(y R / z R)=1$. Trivially $e(z)=k$. Hence, by assumption, $z \in N$. Also, $y \in H_{\ell(1)-1}(M)$ implies that $z \in H_{\ell(1)}(M)$. So that $z \in N \cap H_{\ell(1)}(M) \subseteq$ $H_{1}(N)$. Consequently, there exists a uniform element $w \in N$ such that $z \in w R$ and $d(w R / z R)=1$. Hence appealing to the condition (II),
we find that $e(y-u) \leq d(y R / z R)=1$ i.e. $y-w \in \operatorname{soc}(\bar{N})$. So that $y \in N+\operatorname{soc}(\bar{N})=N$. Hence the result follows by induction.

As a consequence of Proposition 3.10, we have
Corollary 3.11. Let N be an ℓ-imbedded submodule of an S_{3}-module M such that $\operatorname{soc}(N)$ is closed in $\operatorname{Soc}(M)$, then \bar{N} is ℓ-imbedded in M.

Definition 3.12. A submodule N of an S_{2}-module M is called semistrongly ℓ-imbedded in M if for each subsocle S of M containing $\operatorname{soc}(N)$, there exists a subsocle T of M such that
(1) $\operatorname{soc}(\bar{N}) \cap S \subseteq T \subseteq S$.
(2) T is h-dense in S.
(3) T supports an ℓ-imbedded submodule of M containing N.

In view of the results $3.8,3.10,3.11$ and 1.2 the following theorem, a characterization of semi-strongly ℓ-imbedded submodules, can be well adopted from [3, Proposition 3.3].
Theorem 3.13. An ℓ-imbedded submodule N of an S_{3}-module M is semistrongly ℓ-imbedded if and only if \bar{N} is ℓ-imbedded submodule of M.

Now, let us consider an S_{3}-module M in which every ℓ-imbedded submodule is strongly ℓ-imbedded. Then for any ℓ-imbedded submodule N of M and for every subsocle S of M containing $\operatorname{soc}(N)$, there exists an ℓ imbedded submodule K of M containing N such that $\operatorname{soc}(K)=S$. Taking $T=S$, it follows from definition 3.12 that N is semi-strongly ℓ-imbedded in M. Hence by Theorem 3.13, \bar{N} is ℓ-imbedded submodule of M. Thus, M is ℓ-quasi-complete.

These arguments together with Proposition 3.5, give rise to the following characterization of ℓ-quasi-complete modules.

Theorem 3.14. An S_{3}-module M is ℓ-quasi-complete if and only if every ℓ-imbedded submodule of M is strongly ℓ-imbedded.

4. Minimal ℓ-imbeddings

J. D. Moore [3] introduced the concept of minimal ℓ-imbedding in primary abelian groups and deduced some important results of ℓ-quasicomplete abelian groups. Here we make an analogus study for S_{2}-modules and generalize some of our own results from [6].

Definition 4.1. Let N be a submodule of an S_{2}-module M. An ℓ -
imbedded submodule K of M is said to be an ℓ-hull (or minimal ℓ imbedding) of N in M if K is a minimal ℓ-imbedded submodule of M containing N.

Obviously, if K is ℓ-imbedded, it is ℓ^{2}-imbedded (where $\ell^{2}=\ell \circ \ell$) but the converse is not true. However, as remarked in [3], if K is ℓ-imbedded ℓ^{2}-hull of N in M, it is an ℓ-hull of N in M.

The following Proposition is a backbone for this section.
Proposition 4.2. Let N be a submodule of an S_{2}-module M such that $N \subseteq M^{1}$. If K is an ℓ-hull of N in M, then K is h-divisible.
Proof. Suppose on contrary that K is not h-divisible, then by [12, Lemma 2], there exists a uniform element $x \in \operatorname{soc}(K)$ such that $H_{K}(x)=n<\infty$, Hence, by [14, Lemma 1], we can find a bounded summand T of K such that $K=T \oplus L$. Then for any uniform element $u \in N \subseteq K$, we have $u=t+z$, where $t \in T$ and $z \in L$ are uniform elements such that $H(u)=$ $\min \{N(t), H(z)\}$. Since, $H(u)=\infty$, it follows that $t=0$ i.e. $u=z$. Hence, $N \subseteq L$, where L, being ℓ-imbedded is ℓ-imbedded, by Lemma 1.4. This contradicts the minimality of K. Hence, the proposition follows.

We find a submodule K of an S_{2}-module M to be an h-divisible hull of a submodule N of M, if K is a minimal h-divisible submodule of M containing N. It follows from Proposition 4.2 that if $N \subseteq M^{1}$, then an ℓ-hull of N in M is an h-divisible hull. Conversely, if $N \subseteq M^{1}$, then an h-divisible hull of N in M is easily found to be an ℓ-hull of N in M. Thus, we can extend the above proposition as

Proposition 4.3. Let N be a submodule of an S_{2}-module M such that $N \subseteq M^{1}$. Then a submodule K of M is an ℓ-hull of N in M if and only if K is an h-divisible hull of N in M.

Definition 4.4. An S_{2}-module M is said to have I.C.C. (Imbedded Chain Condition) if every descending chain of imbedded submodules of M terminates after a finite number of steps.

Analogous to [6, Proposition 11], we have
Proposition 4.5. Let M be an S_{2}-module with I.C.C. and N, K be submodules of M such that K is ℓ-imbedded in M with $K \subseteq N \subseteq \bar{K}$. Then N has an ℓ-imbedded ℓ^{2}-hull in M if and only if $N \subseteq K_{1}$, where K_{1} is the submodule of M containing K for which K_{1} / K is the maximal h-divisible submodule of M / K.

Proof. If T is an ℓ-imbedded ℓ^{2}-hull of N in M, then, by Lemma 1.3, T / K is an ℓ-imbedded ℓ^{2}-hull of N / K in M / K. Since, $N / K \subseteq \bar{K} / K=$ $(M / K)^{1}$, therefore, by Proposition 4.2, T / K is h-divisible submodule of M / K. So that $T \subseteq K_{1}$ and hence $N \subseteq K_{1}$. Conversely, if $N \subseteq K_{1}$, then N / K is contained in K_{1} / K the maximal h-divisible submodule of M / K containing N / K. If K_{1} / K is also an h-divisible hull of N / K in M / K, then as $N / K \subseteq \bar{K} / K=(M / K)^{1}$, we find, by proposition 4.3 that K_{1} / K is an ℓ-imbedded ℓ-hull of N / K in M / K. Consequently, K_{1} is ℓ-imbedded ℓ^{2}-hull of N in M. If K_{1} / K is not an h-divisible hull of N / K in M / K, then we get an h-divisible submodule K_{2} / K of M / K containing N / K and contained in K_{1} / K. If K_{2} / K is an h-divisible hull of N / K in M / K, then K_{2} is an ℓ-imbedded ℓ^{2}-hull of N in M. If not, then continuing this process, we get a descending chain of ℓ-imbedded submodules of M containing N which terminates. Hence, we get an ℓ-imbedded ℓ^{2}-hull of N in M and the proposition follows.

The following theorem gives a characterization for ℓ-quasi-complete modules.

Theorem 4.6. An S_{2}-module M with I.C.C. is ℓ-quasi-complete if and only if for all submodules N, K, with K-imbedded in M and $K \subseteq N \subseteq$ \bar{K}, N has an ℓ-imbedded ℓ^{2}-hull in M.
Proof. Suppose that M is ℓ-quasi-complete. Then for all submodules, N, K with $K \quad \ell$-imbedded in M and $K \subseteq N \subseteq \bar{K}$, we have, by Lemma 1.10, \bar{K} / K to be h-divisible. If \bar{K} / K is a minimal h-divisible submodule of M / K containing N / K, then as $N / K \subseteq \bar{K} / K=(M / K)^{1}$, using Proposition 4.3, we find that \bar{K} / K is I-imbedded ℓ-hull of N / K in M / K. Consequently, \bar{K} is an ℓ-imbedded ℓ^{2}-hull of N in M. If \bar{K} / K is not minimal h-divisible containing N / K, then using I.C.C, we can find an ℓ-imbedded ℓ^{2}-hull of N in M. The proof of the converse part is quite analogoue to that of $(3) \Rightarrow(1)$ of $[3$, Theorem 3.3].

Towards the end of this section, we have the following theorem, analogous to [6, Theorem 12] which is an other characterization for ℓ-quasicomplete modules. The proof is quite analogous to the above theorem 4.6, hence is omitted.

Theorem 4.7. An S_{2}-module M with I.C.C. is ℓ-quasi-complete if and only if every submodule N of M containing an ℓ-imbedded submodule K of M with N / K-divisible, has an ℓ-imbedded ℓ^{2}-hull in M.

References

[1] A. Halim Ansari, Mofeed Ahmad and M. Zubair Khan, Some decomposition theorems on S_{2}-module II, Tamk. J. Math. Vol. 11, No. 2 (1980), 215-220.
[2] A. Halim Ansari, Mofeed Ahmad and Zubair Khan, Some decomposition theorems on S_{2}-modules III, Tamk. J. Math. Vol. 12 (1981), 147-154.
[3] J. D. Moore, On quasi-complete abelian p-groups, Rocky Mountain J. Math. 5(1975), 601-609.
[4] L. Fuchs, Infinite Abelian Groups, Vol.I, Academic Press, New York, 1970.
[5] L. Fuchs, Infinite Abelian Groups, Vol.II, Academic Press, New York, 1973.
[6] Mofeed Ahmad, A. Halim Ansari and M. Zubair Khan, On subsocles of S_{2} modules, Tamk. J. Math. Vol. 11, No. 2 (1980) 221-229.
[7] Mofeed Ahmad, A. Halim Ansari and M. Zubair Khan, Some decomposition theorems on S_{2}-modules, Tamk. J. Math. Vol.II, No. 2 (1980), 203-208.
[8] M. Zubair Khan, Modules behaving like Torsion Abelian groups, Math. Japonica 22(1978), 513-518.
[9] M. Zubair Khan, Modules behaving like torsion abelian groups II, Math. Japonica 23(1979), 509-516.
[10] M. Zubair Khan, Modules over bounded hereditary noetherian prime rings, Canad. Math. Bull. 22(1979), 53-57.
[11] M. Zubair Khan, Modules behaving like torsion abelian groups, Canad. Math. Bull. 22(1979), 449-457.
[12] M. Zubair Khan, h-divisible and basic submodules, Tamk. J. Math. 10(1979), 197203.
[13] P. Hill and C. Megibben, Minimal pure subgroups in primary groups, Bull. Soc. Math. France 92(1964), 251-257.
[14] S. Singh, Some decomposition theorems in abelian groups and their generalizations, Ring theory, Proc. Ohio. Univ. Conf., Marcel Dekker, N.Y. (1976), 183-189.

Department of Mathematics, Aligarh Muslim University, Aligarh-202001, India

