A NOTE ON F-CLOSED SPACES

Takashi Noiri

1. Introduction

In 1969, Porter and Thomas [12] defined a topological space X to be quasi H-closed if every open cover of X has a finite proximate subcover. A family of sets whose union is dense in X is called a proximate cover of X. Recently, Chae and Lee [2] have introduced and studied the concept of F-closed spaces by utilizing feebly open sets due to Maheshwari and Tapi [6]. A topological space X is said to be F-closed [2] if every feebly open cover of X has a finite proximate subcover. The main purpose of the present note is to show that the F-closed property is equivalent to the quasi H-closed property.

2. Preliminaries

Throughout the present note, spaces always mean topological spaces on which no separation axioms are assumed. Let A be a subset of a space X. The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be preopen [9] (resp. semi-open [5], α -open [10]) if $A \subset Int(Cl(A))$ (resp. $A \subset Cl(Int(A)), A \subset Int(Cl(Int(A))))$. The complement of a preopen (resp. semi-open, α -open) set is said to be preclosed (resp. semi-closed, α -closed). The intersection of all semi-closed sets of X containing A is called the semi-closure of A [3] and is denoted by sCl(A). A subset A is said to be feebly open [6] if there exists an open set U of X such that $U \subset A \subset sCl(U)$. The following property is shown in [11, Lemma 3.1].

Lemma 2.1. A subset of a space X is α -open in X if and only if it is semi-open and preopen in X.

3. Quasi *H*-closed spaces

Lemma 3.1. If A is a preopen set of a space X, then Cl(Int(Cl(A))) = Cl(A) and sCl(A) = Int(Cl(A)).

Proof. The first part is obvious and the second follows from $sCl(A) = A \cup Int(Cl(A))$ [1, Theorem 1.5].

Lemma 3.2. A subset A of a space X is feebly open in X if and only if it is α -open in X.

Proof. Let A be feebly open in X. There exists an open set U of X such that $U \subset A \subset sCl(U)$. Since $U \subset Int(A)$ and sCl(U) = Int(Cl(U)) by Lemma 3.1, we have $A \subset Int(Cl(Int(A)))$ and hence A is α -open in X. Conversely, let A be α -open in X. We have $A \subset Int(Cl(Int(A)))$ and hence $Int(A) \subset A \subset sCl(Int(A))$. Therefore, A is feebly open in X.

Definition 3.3. A space X is said to be F-closed [2] if every feebly open cover of X has a finite proximate subcover.

Theorem 3.4. The following are equivalent for a space X:

(a) X is F-closed.

(b) X is quasi H-closed.

(c) Every preopen cover of X has a finite proximate subcover.

(d) For each family $\{F_{\alpha}|\alpha \in \nabla\}$ of preclosed sets in X satisfying $\cap \{F_{\alpha}|\alpha \in \nabla\} = \emptyset$, there exists a finite subset ∇_0 of ∇ such that $\cap \{Int(F_{\alpha}) | \alpha \in \nabla_0\} = \emptyset$.

Proof. (a) \Rightarrow (b) : The proof is obvious since every open set is feebly open.

(b) \Rightarrow (c) : Let $\{V_{\alpha} | \alpha \in \nabla\}$ be a cover of X by preopen sets of X. For each $\alpha \in \nabla$, $V_{\alpha} \subset Int(Cl(V_{\alpha}))$ and $\{Int(Cl(V_{\alpha})) | \alpha \in \nabla\}$ is an open cover of X. There exists a finite subset ∇_0 of ∇ such that

$$X = \bigcup \{ Cl(Int(Cl(V_{\alpha}))) | \alpha \in \nabla_0 \}.$$

By Lemma 3.1, we obtain $X = \bigcup \{ Cl(V_{\alpha}) | \alpha \in \nabla_0 \}.$

(c) \Rightarrow (d) and (d) \Rightarrow (a) : These follow easily from Lemmas 2.1 and 3.2.

Remark 3.5. By Theorem 3.4, we observe that Example 4.1 of [2] is false since $\beta \mathbf{N} \times \beta \mathbf{N}$ is compact.

A subset A of a space X is said to be F-closed relative to X [2] (resp. quasi H-closed relative to X [12]) if for every cover $\{V_{\alpha} | \alpha \in \nabla\}$ of A by feebly open (resp. open) sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl(V_{\alpha}) | \alpha \in \nabla_0\}$.

Theorem 3.6. A subset A of a space X is F-closed relative to X if and only if it is quasi H-closed relative to X.

Proof. Suppose that A is quasi H-closed relative to X. Let $\{V_{\alpha} | \alpha \in \nabla\}$ be a cover of A by feebly open sets of X. By Lemma 3.2, $\{Int(Cl(Int(V_{\alpha}))) | \alpha \in \nabla\}$ is a cover of A by open sets of X. There exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl(Int(V_{\alpha})) | \alpha \in \nabla_0\}$. By Lemmas 2.1 and 3.2, V_{α} is semi-open and hence $Cl(Int(V_{\alpha})) = Cl(V_{\alpha})$ for each $\alpha \in \nabla$. Therefore, we have $A \subset \bigcup \{Cl(V_{\alpha}) | \alpha \in \nabla_0\}$. The converse is obvious since every open set is feebly open.

It was pointed out in [12, p. 161] that every quasi H-closed subspace is quasi H-closed relative to the space but not conversely. In [2, Theorem 2.2], Chae and Lee showed that a feebly open subspace of a space X is Fclosed if and only if it is F-closed relative to X. The following theorem is a slight improvement of this result since every feebly open set is preopen.

Theorem 3.7. Let A be a preopen set of a space X. The subspace A is quasi H-closed if and only if A is quasi H-closed relative to X.

Proof. Suppose that A is preopen in X and quasi H-closed relative to X. Let $\{V_{\alpha} | \alpha \in \nabla\}$ be a cover of A by open sets of the subspace A. For each $\alpha \in \nabla$, there exists an open set W_{α} of X such that $V_{\alpha} = W_{\alpha} \cap A$. Since A is preopen in X, we have

$$V_{\alpha} \subset W_{\alpha} \cap Int(Cl(A)) = Int(W_{\alpha} \cap Cl(A)) \subset Int(Cl(W_{\alpha} \cap A)) = Int(Cl(V_{\alpha}))$$

Therefore, V_{α} is preopen in X and $\{Int(Cl(V_{\alpha}))|\alpha \in \nabla\}$ is a cover of A by open sets of X. By Lemma 3.1, there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl(V_{\alpha})|\alpha \in \nabla_0\}$. Therefore, we obtain

$$A = \bigcup \{ Cl(V_{\alpha}) \cap A | \alpha \in \nabla_0 \} = \bigcup \{ Cl_A(V_{\alpha}) | \alpha \in \nabla_0 \},\$$

where $Cl_A(V_\alpha)$ denotes the closure of V_α in the subspace A. This shows that A is quasi H-closed.

A function $f: X \to Y$ is said to be α -continuous [8] (resp. α -irresolute [7]) if $f^{-1}(V)$ is α -open in X for every open (resp. α -open) set V of Y. By Lemma 3.2, α -continuity (resp. α -irresoluteness) is equivalent to feeble continuity (resp. feeble irresoluteness) due to Chae and Lee [2]. A function $f: X \to Y$ is said to be θ -continuous [4] if for each $x \in X$ and each open set V containing f(x), there exists an open set U containing x such that $f(Cl(U)) \subset Cl(V)$. Remark 3.8. For the properties on a function $f: X \to Y$, the following implications are known in [7] and [8]:

Lemma 3.9. If $f : X \to Y$ is θ -continuous and A is quasi H-closed relative to X, then f(A) is quasi H-closed relative to Y.

Proof. The proof is obvious and is thus omitted.

Corollary 3.10 (Chae and Lee [2]). Let X be an F-closed space and $f: X \to Y$ a function. Then, the following properties hold:

- (a) If f is a feebly continuous surjection, then Y is quasi H-closed.
- (b) If f is a feebly irresolute surjection, then Y is F-closed.
- (c) If f is feebly irresolute and Y is Hausdorff, then f(X) is closed in Y.

Proof. (a) and (b) are immediate consequences of Theorem 3.4 and Lemma 3.9. (c) follows from Theorem 3.4, Lemma 3.9 and the fact that if B is quasi H-closed relative to Y and Y is Hausdorff then B is closed in Y.

References

- [1] D. Andrijecvić, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
- [2] Gyuihn Chae and Dowon Lee, F-closed spaces, Kyungpook Math. J. 27(1987), 127-134.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [4] S. Fomin, Extensions of topological spaces, Ann. of Math. 44(1943), 471-480.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- S. N. Maheshwari and U. D. Tapi, Note on some applications of feebly open sets, M. B. J. Univ. of Saugar (to appear).
- [7] S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11(1980), 209-214.

- [8] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hung. 41(1983), 213-218.
- [9] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [10] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.
- [11] T. Noiri, On α-continuous functions, Casopis Pest. Mat. 109 (1984), 118-126.
- [12] J. Porter and J. Thomas, On H-closed and minimal H-closed spaces, Trans. Amer. Math. Soc. 138(1969), 159-170.

YATSUSHIRO COLLEGE OF TECHNOLOGY, YATSUSHIRO, KUMAMOTO, 866 JAPAN.