A NOTE ON \(F \)-CLOSED SPACES

Takashi Noiri

1. Introduction

In 1969, Porter and Thomas [12] defined a topological space \(X \) to be quasi \(H \)-closed if every open cover of \(X \) has a finite proximate subcover. A family of sets whose union is dense in \(X \) is called a proximate cover of \(X \). Recently, Chae and Lee [2] have introduced and studied the concept of \(F \)-closed spaces by utilizing feebly open sets due to Maheshwari and Tapi [6]. A topological space \(X \) is said to be \(F \)-closed [2] if every feebly open cover of \(X \) has a finite proximate subcover. The main purpose of the present note is to show that the \(F \)-closed property is equivalent to the quasi \(H \)-closed property.

2. Preliminaries

Throughout the present note, spaces always mean topological spaces on which no separation axioms are assumed. Let \(A \) be a subset of a space \(X \). The closure and the interior of \(A \) are denoted by \(\text{Cl}(A) \) and \(\text{Int}(A) \), respectively. A subset \(A \) is said to be \(\text{preopen} \) [9] (resp. \(\text{semi-open} \) [5], \(\alpha \)-open [10]) if \(A \subseteq \text{Int}(\text{Cl}(A)) \) (resp. \(A \subseteq \text{Cl}(\text{Int}(A)) \)). The complement of a preopen (resp. semi-open, \(\alpha \)-open) set is said to be \(\text{preclosed} \) (resp. \(\text{semi-closed} \), \(\alpha \)-closed). The intersection of all semi-closed sets of \(X \) containing \(A \) is called the \(\text{semi-closure} \) of \(A \) [3] and is denoted by \(s\text{Cl}(A) \). A subset \(A \) is said to be \(\text{feebly open} \) [6] if there exists an open set \(U \) of \(X \) such that \(U \subseteq A \subseteq s\text{Cl}(U) \). The following property is shown in [11, Lemma 3.1].

Lemma 2.1. A subset of a space \(X \) is \(\alpha \)-open in \(X \) if and only if it is semi-open and preopen in \(X \).

3. Quasi \(H \)-closed spaces
Lemma 3.1. If A is a preopen set of a space X, then $\text{Cl} (\text{Int}(\text{Cl}(A))) = \text{Cl}(A)$ and $s\text{Cl}(A) = \text{Int}(\text{Cl}(A))$.

Proof. The first part is obvious and the second follows from $s\text{Cl}(A) = A \cup \text{Int}(\text{Cl}(A))$ [1, Theorem 1.5].

Lemma 3.2. A subset A of a space X is feebly open in X if and only if it is α-open in X.

Proof. Let A be feebly open in X. There exists an open set U of X such that $U \subset A \subset s\text{Cl}(U)$. Since $U \subset \text{Int}(A)$ and $s\text{Cl}(U) = \text{Int}(\text{Cl}(U))$ by Lemma 3.1, we have $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$ and hence A is α-open in X. Conversely, let A be α-open in X. We have $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$ and hence $\text{Int}(A) \subset A \subset s\text{Cl}(\text{Int}(A))$. Therefore, A is feebly open in X.

Definition 3.3. A space X is said to be F-closed [2] if every feebly open cover of X has a finite proximate subcover.

Theorem 3.4. The following are equivalent for a space X:

(a) X is F-closed.
(b) X is quasi H-closed.
(c) Every preopen cover of X has a finite proximate subcover.
(d) For each family $\{F_\alpha|\alpha \in \nabla\}$ of preclosed sets in X satisfying $\cap \{F_\alpha|\alpha \in \nabla\} = \emptyset$, there exists a finite subset ∇_0 of ∇ such that $\cap \{\text{Int}(F_\alpha)|\alpha \in \nabla_0\} = \emptyset$.

Proof. (a) \Rightarrow (b) : The proof is obvious since every open set is feebly open.

(b) \Rightarrow (c) : Let $\{V_\alpha|\alpha \in \nabla\}$ be a cover of X by preopen sets of X. For each $\alpha \in \nabla$, $V_\alpha \subset \text{Int}(\text{Cl}(V_\alpha))$ and $\{\text{Int}(\text{Cl}(V_\alpha))|\alpha \in \nabla\}$ is an open cover of X. There exists a finite subset ∇_0 of ∇ such that $X = \cup \{\text{Cl}(\text{Int}(\text{Cl}(V_\alpha)))|\alpha \in \nabla_0\}$.

By Lemma 3.1, we obtain $X = \cup \{\text{Cl}(V_\alpha)|\alpha \in \nabla_0\}$.

(c) \Rightarrow (d) and (d) \Rightarrow (a) : These follow easily from Lemmas 2.1 and 3.2.

Remark 3.5. By Theorem 3.4, we observe that Example 4.1 of [2] is false since $\beta\mathbb{N} \times \beta\mathbb{N}$ is compact.

A subset A of a space X is said to be F-closed relative to X [2] (resp. quasi H-closed relative to X [12]) if for every cover $\{V_\alpha|\alpha \in \nabla\}$ of A by feebly open (resp. open) sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subset \cup \{\text{Cl}(V_\alpha)|\alpha \in \nabla_0\}$.
Theorem 3.6. A subset A of a space X is F-closed relative to X if and only if it is quasi H-closed relative to X.

Proof. Suppose that A is quasi H-closed relative to X. Let $\{V_\alpha|\alpha \in \mathcal{V}\}$ be a cover of A by feebly open sets of X. By Lemma 3.2, $\{\text{Int}(\text{Cl}(\text{Int}(V_\alpha)))|\alpha \in \mathcal{V}\}$ is a cover of A by open sets of X. There exists a finite subset \mathcal{V}_0 of \mathcal{V} such that $A \subset \bigcup\{\text{Cl}(\text{Int}(V_\alpha))|\alpha \in \mathcal{V}_0\}$. By Lemmas 2.1 and 3.2, V_α is semi-open and hence $\text{Cl}(\text{Int}(V_\alpha)) = \text{Cl}(V_\alpha)$ for each $\alpha \in \mathcal{V}$. Therefore, we have $A \subset \bigcup\{\text{Cl}(V_\alpha)|\alpha \in \mathcal{V}_0\}$. The converse is obvious since every open set is feebly open.

It was pointed out in [12, p. 161] that every quasi H-closed subspace is quasi H-closed relative to the space but not conversely. In [2, Theorem 2.2], Chae and Lee showed that a feebly open subspace of a space X is F-closed if and only if it is F-closed relative to X. The following theorem is a slight improvement of this result since every feebly open set is preopen.

Theorem 3.7. Let A be a preopen set of a space X. The subspace A is quasi H-closed if and only if A is quasi H-closed relative to X.

Proof. Suppose that A is preopen in X and quasi H-closed relative to X. Let $\{V_\alpha|\alpha \in \mathcal{V}\}$ be a cover of A by open sets of the subspace A. For each $\alpha \in \mathcal{V}$, there exists an open set W_α of X such that $V_\alpha = W_\alpha \cap A$. Since A is preopen in X, we have

$$V_\alpha \subset W_\alpha \cap \text{Int}(\text{Cl}(A)) = \text{Int}(W_\alpha \cap \text{Cl}(A)) \subset \text{Int}(\text{Cl}(W_\alpha \cap A)) = \text{Int}(\text{Cl}(V_\alpha)).$$

Therefore, V_α is preopen in X and $\{\text{Int}(\text{Cl}(V_\alpha))|\alpha \in \mathcal{V}\}$ is a cover of A by open sets of X. By Lemma 3.1, there exists a finite subset \mathcal{V}_0 of \mathcal{V} such that $A \subset \bigcup\{\text{Cl}(V_\alpha)|\alpha \in \mathcal{V}_0\}$. Therefore, we obtain

$$A = \bigcup\{\text{Cl}(V_\alpha) \cap A|\alpha \in \mathcal{V}_0\} = \bigcup\{\text{Cl}_A(V_\alpha)|\alpha \in \mathcal{V}_0\},$$

where $\text{Cl}_A(V_\alpha)$ denotes the closure of V_α in the subspace A. This shows that A is quasi H-closed.

A function $f : X \to Y$ is said to be α-continuous [8] (resp. α-irresolute [7]) if $f^{-1}(V)$ is α-open in X for every open (resp. α-open) set V of Y. By Lemma 3.2, α-continuity (resp. α-irresoluteness) is equivalent to feeble continuity (resp. feeble irresoluteness) due to Chae and Lee [2]. A function $f : X \to Y$ is said to be θ-continuous [4] if for each $x \in X$ and each open set V containing $f(x)$, there exists an open set U containing x such that $f(\text{Cl}(U)) \subset \text{Cl}(V)$.
Remark 3.8. For the properties on a function $f : X \to Y$, the following implications are known in [7] and [8]:

\[
\begin{align*}
\alpha - \text{irresoluteness} & \quad \Rightarrow \quad \alpha - \text{continuity} \Rightarrow \theta - \text{continuity}.
\end{align*}
\]

Lemma 3.9. If $f : X \to Y$ is θ-continuous and A is quasi H-closed relative to X, then $f(A)$ is quasi H-closed relative to Y.

Proof. The proof is obvious and is thus omitted.

Corollary 3.10 (Chae and Lee [2]). Let X be an F-closed space and $f : X \to Y$ a function. Then, the following properties hold:

(a) If f is a feebly continuous surjection, then Y is quasi H-closed.
(b) If f is a feebly irresolute surjection, then Y is F-closed.
(c) If f is feebly irresolute and Y is Hausdorff, then $f(X)$ is closed in Y.

Proof. (a) and (b) are immediate consequences of Theorem 3.4 and Lemma 3.9. (c) follows from Theorem 3.4, Lemma 3.9 and the fact that if B is quasi H-closed relative to Y and Y is Hausdorff then B is closed in Y.

References

YATSUSHIRO COLLEGE OF TECHNOLOGY, YATSUSHIRO, KUMAMOTO, 866 JAPAN.