FUZZY Γ-RINGS

YOUNG BAE JUN AND CHONG YUN LEE

The concept of a fuzzy set, introduced by Zadeh ([6]), was applied in [2] to generalize some of the basic concepts of general topology. Rosenfeld ([5]) applied this concept to the theory of groupoids and groups. The present paper constitutes a similar application to the elementary theory of Γ-rings.

We recall that a fuzzy set in a set \(S \) is a function \(\mu \) from \(S \) into \([0, 1]\). Let \(\mu \) and \(\nu \) be fuzzy sets in a set \(S \). Then we define

\[
\mu = \nu \iff \mu(x) = \nu(x) \quad \text{for all } x \in S.
\]

\[
\mu \subseteq \nu \iff \mu(x) \leq \nu(x) \quad \text{for all } x \in S.
\]

\[
(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\} \quad \text{for all } x \in S.
\]

\[
(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\} \quad \text{for all } x \in S.
\]

More generally, for a family of fuzzy sets, \(\{\mu_i \mid i \in I\} \), we define

\[
(\bigcup_{i \in I} \mu_i)(x) = \sup_{i \in I} \{\mu_i(x)\}, \quad x \in S
\]

\[
(\bigcap_{i \in I} \mu_i)(x) = \inf_{i \in I} \{\mu_i(x)\}, \quad x \in S.
\]

Definition 1. ([1]) If \(M = \{x, y, z, \ldots\} \) and \(\Gamma = \{\alpha, \beta, \gamma, \ldots\} \) are additive abelian groups, and for all \(x, y, z \) in \(M \) and all \(\alpha, \beta \) in \(\Gamma \), the following conditions are satisfied

1. \(x\alpha y \) is an element of \(M \),
2. \((x + y)\alpha z = x\alpha z + y\alpha z \), \(x(\alpha + \beta)y = x\alpha y + x\beta y \), \(x\alpha(y + z) = x\alpha y + x\alpha z \),
3. \((x\alpha y)\beta z = x\alpha(y\beta z) \),

then \(M \) is called a Γ-ring.

Received October 7, 1992.
DEFINITION 2. ([1]) A subset A of the Γ-ring M is a left (right) ideal of M if A is an additive subgroup of M and

$$M\Gamma A = \{x\alpha y | x \in M, \alpha \in \Gamma, y \in A\}(\Gamma M)$$

is contained in A. If A is both a left and a right ideal, then A is a two-sided ideal, or simply an ideal of M.

DEFINITION 3. A fuzzy set μ in a Γ-ring M is called a fuzzy left (right) ideal of M if

- $(4) \mu(x - y) \geq \min\{\mu(x), \mu(y)\}$,
- $(5) \mu(x\alpha y) \geq \mu(y) \quad (\mu(x\alpha y) \geq \mu(x))$,

for all $x, y \in M$ and all $\alpha \in \Gamma$.

A fuzzy set μ in a Γ-ring M is called a fuzzy ideal of M if μ is both a fuzzy left and a fuzzy right ideal of M.

We note that μ is a fuzzy ideal of M if and only if

- $(4) \mu(x - y) \geq \min\{\mu(x), \mu(y)\}$,
- $(6) \mu(x\alpha y) \geq \max\{\mu(x), \mu(y)\}$,

for all $x, y \in M$ and all $\alpha \in \Gamma$.

Throughout this paper, all proofs are going to proceed the only left cases, because the right cases are obtained from similar method. We denote 0_M the zero element of a Γ-ring M.

PROPOSITION 1. If μ is a fuzzy left (right) ideal of a Γ-ring M, then

- $(7) \mu(0_M) \geq \mu(x)$,
- $(8) \mu(-x) = \mu(x)$,
- $(9) \mu(x - y) = \mu(0_M)$ implies $\mu(x) = \mu(y)$,

for all $x, y \in M$.

Proof. (7) We have that for any $x \in M$,

$$\mu(0_M) = \mu(x - x) \geq \min\{\mu(x), \mu(x)\} = \mu(x).$$

(8) By (7), we have that

$$\mu(-x) = \mu(0_M - x) \geq \min\{\mu(0_M), \mu(x)\} = \mu(x)$$

for all $x \in M$. Since x is arbitrary, we conclude that $\mu(-x) = \mu(x)$.
(9) Assume that \(\mu(x - y) = \mu(0_M) \) for all \(x, y \in M \). Then
\[
\mu(x) = \mu(x - y + y) \\
\geq \min\{\mu(x - y), \mu(y)\} \\
= \min\{\mu(0_M), \mu(y)\} \\
= \mu(y).
\]
Similarly, using \(\mu(y - x) = \mu(x - y) = 0 \), we have \(\mu(y) \geq \mu(x) \).

Example 1. If \(G \) and \(H \) are additive abelian groups and \(M = \text{Hom}(G, H), \Gamma = \text{Hom}(H, G) \) then \(M \) is a \(\Gamma \)-ring with the operations pointwise addition and composition of homomorphisms ([1]). Define a fuzzy set \(\mu : M \rightarrow [0, 1] \) by \(\mu(0_M) = t_1, \mu(f) = t_2, 0 \leq t_2 < t_1 \leq 1 \), where \(f \) is any member of \(M \) with \(f \neq 0_M \). Routine calculations give that \(\mu \) is a fuzzy left (right) ideal of \(M \).

Theorem 1. If \(\mu \) is a fuzzy left (right) ideal of a \(\Gamma \)-ring \(M \), then the set
\[
A := \{ x \in M | \mu(x) = \mu(0_M) \}
\]
is a left (right) ideal of \(M \).

Proof. Let \(x, y \in A \). Then by (4),
\[
\mu(x - y) \geq \min\{\mu(x), \mu(y)\} = \mu(0_M).
\]
It follows from (7) that \(\mu(x - y) = \mu(0_M) \), so that \(x - y \in A \). This means that \(A \) is an additive subgroup of \(M \). Now let \(u \in A, \alpha \in \Gamma \) and \(x \in M \). Then by (5), \(\mu(x\alpha u) \geq \mu(u) = \mu(0_M) \) and so \(\mu(x\alpha u) = \mu(0_M) \). Therefore \(x\alpha u \in A \). This completes the proof.

Theorem 2. The intersection of any family of fuzzy left (right) ideals of a \(\Gamma \)-ring \(M \) is also a fuzzy left (right) ideal of \(M \).

Proof. Let \(\{\mu_i\} \) be a family of fuzzy left ideals of a \(\Gamma \)-ring \(M \). Then for every \(x, y \in M \) and \(\alpha \in \Gamma \),
\[
(\cap \mu_i)(x - y) = \inf\{\mu_i(x - y)\} \\
\geq \inf\{\min\{\mu_i(x), \mu_i(y)\}\} \\
= \min\{\inf \mu_i(x), \inf \mu_i(y)\} \\
= \min\{(\cap \mu_i)(x), (\cap \mu_i)(y)\}
\]
and
\[(\cap \mu_t)(x \alpha y) = \inf \{\mu_t(x \alpha y)\} \geq \inf \{\mu_t(y)\} = (\cap \mu_t)(y)\].

Definition 4. ([3]) Let \(\mu\) be a fuzzy set in a set \(S\). For \(t \in [0,1]\), the set
\[\mu_t := \{x \in S | \mu(x) \geq t\}\]
is called a level subset of \(\mu\).

Theorem 3. Let \(\mu\) be a fuzzy set in a \(\Gamma\)-ring \(M\). Then
(a) if \(\mu\) is a fuzzy left (right) ideal of \(M\), then \(\mu_t\) is a left (right) ideal of \(M\) for all \(t \in [0,\mu(0_M)]\) which is called the level left (right) ideal of \(M\).
(b) if \(\mu_t\) is a left (right) ideal of \(M\) for all \(t \in Im(\mu)\), then \(\mu\) is a fuzzy left (right) ideal of \(M\).

Proof. (a) Assume that \(\mu\) is a fuzzy left ideal of \(M\). Let \(x, y \in \mu_t\).
Then \(\mu(x) \geq t\) and \(\mu(y) \geq t\). It follows that
\[\mu(x - y) \geq \min \{\mu(x), \mu(y)\} \geq t,\]
and that \(x - y \in \mu_t\). Now let \(x \in M, \alpha \in \Gamma\) and \(y \in \mu_t\). Since \(\mu\) is a fuzzy left ideal, \(\mu(x \alpha y) \geq \mu(y) \geq t\). Thus \(x \alpha y \in \mu_t\). Therefore \(\mu_t\) is a left ideal of \(M\).
(b) Let \(\mu_t\) be a left ideal of \(M\). We must prove that (4) and (5) hold. If (4) is not true, then
\[\mu(x - y) < \min \{\mu(x), \mu(y)\}\]
for some \(x, y \in M\). For these elements \(x, y\), there exist \(t_i, t_j \in Im(\mu)\), say \(t_i < t_j\), such that \(\mu(x) = t_i, \mu(y) = t_j\). Then
\[\mu(x - y) < \min \{\mu(x), \mu(y)\} = t_i,\]
and so \(x - y \notin \mu_t\). This is a contradiction. If (5) is not true, then for a fixed \(\alpha \in \Gamma\), there exist \(x, y \in M\) such that \(\mu(x \alpha y) < \mu(y)\). Let \(s_i, s_j \in Im(\mu)\) be such that \(s_i < s_j\), \(\mu(x) = s_i\) and \(\mu(y) = s_j\). Then \(\mu(x \alpha y) < \mu(y) = s_j\) and so \(x \alpha y \notin \mu_{s_j}\), a contradiction. This completes the proof.
Fuzzy Γ-rings

THEOREM 4. Let \(A \) be a left (right) ideal of a Γ-ring \(M \). Then for any \(t \in (0,1) \), there exists a fuzzy left (right) ideal \(\mu \) of \(M \) such that \(\mu_t = A \).

Proof. Let \(\mu : M \to [0,1] \) be a fuzzy set defined by

\[
\mu(x) = \begin{cases}
 t & \text{if } x \in A, \\
 0 & \text{if } x \not\in A,
\end{cases}
\]

where \(t \) is a fixed number in \((0,1)\). Then clearly \(\mu_t = A \). Let \(x, y \in M \) and \(\alpha \in \Gamma \). By routine calculations, we have that

\[
\mu(x - y) \geq \min\{\mu(x), \mu(y)\}.
\]

Now if \(y \in A \), then \(xay \in A \) because \(A \) is a left ideal of \(M \). Hence \(\mu(xay) = t = \mu(y) \). If \(y \not\in A \), then \(\mu(y) = 0 \) and so \(\mu(xay) \geq \mu(y) \).

Therefore \(\mu \) is a fuzzy left ideal of \(M \).

THEOREM 5. Let \(\mu \) be a fuzzy left (right) ideal of a Γ-ring \(M \). Then two level left (right) ideals \(\mu_{t_1} \) and \(\mu_{t_2} \) (with \(t_1 < t_2 \)) of \(\mu \) are equal if and only if there is no \(x \in M \) such that \(t_1 \leq \mu(x) < t_2 \).

Proof. (\(\Rightarrow \)) Suppose \(t_1 < t_2 \) and \(\mu_{t_1} = \mu_{t_2} \). If there exists \(x \in M \) such that \(t_1 \leq \mu(x) < t_2 \), then \(\mu_{t_2} \) is a proper subset of \(\mu_{t_1} \). This is a contradiction.

(\(\Leftarrow \)) Assume that there is no \(x \in M \) such that \(t_1 \leq \mu(x) < t_2 \). From \(t_1 < t_2 \) it follows that \(\mu_{t_2} \subseteq \mu_{t_1} \). If \(x \in \mu_{t_1} \), then \(\mu(x) \geq t_1 \) and so \(\mu(x) \geq t_2 \) because \(\mu(x) \not\in t_2 \). Hence \(x \in \mu_{t_2} \). This completes the proof.

THEOREM 6. Let \(M \) be a Γ-ring and \(\mu \) a fuzzy left (right) ideal of \(M \). If \(\text{Im}(\mu) = \{t_1, ..., t_n\} \), where \(t_1 < ... < t_n \), then the family of left (right) ideals \(\mu_{t_i} (i = 1, ..., n) \) constitutes all the level left (right) ideals of \(\mu \).

Proof. Let \(t \in [0,1] \) and \(t \not\in \text{Im}(\mu) \). If \(t < t_1 \), then \(\mu_{t_1} \subseteq \mu_t \). Since \(\mu_{t_1} = M \), it follows that \(\mu_t = M \), so that \(\mu_t = \mu_{t_1} \). If \(t_i < t < t_{i+1} (1 \leq i \leq n - 1) \) then there is no \(x \in M \) such that \(t \leq \mu(x) < t_{i+1} \). From Theorem 5, we have that \(\mu_t = \mu_{t_{i+1}} \). This shows that for any \(t \in [0,1] \) with \(t \leq \mu(0_M) \), the level left ideal \(\mu_t \) is in \(\{\mu_i | 1 \leq i \leq n\} \).
THEOREM 7. Let A be a nonempty subset of a Γ-ring M and let
\(\mu \) be a fuzzy set in M such that μ is into \{0,1\}, so that μ is the characteristic function of A. Then μ is a fuzzy left (right) ideal of M if and only if A is a left (right) ideal of M.

Proof. Assume that μ is a fuzzy left ideal of M. Let $x, y \in A$. Then $\mu(x) = \mu(y) = 1$. Thus $\mu(x - y) \geq \min\{\mu(x), \mu(y)\} = 1$ and so $\mu(x - y) = 1$. This means that $x - y \in A$. Therefore A is an additive subgroup of M. Let $x \in M, y \in A$ and $\alpha \in \Gamma$. Then $\mu(x\alpha y) \geq \mu(y) = 1$ and hence $\mu(x\alpha y) = 1$. So $x\alpha y \in A$, and A is a left ideal of M. The proof of converse is similar to that of Theorem 4.

DEFINITION 5. ([1]) Let M and N both be Γ-rings, and θ a mapping of M into N. Then θ is a Γ-homomorphism iff $\theta(x + y) = \theta(x) + \theta(y)$ and $\theta(x\alpha y) = \theta(x)\alpha\theta(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

DEFINITION 6. ([5]) If μ is a fuzzy set in M, and f is a function defined on M, then the fuzzy set ν in $f(M)$ defined by

\[\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x) \]

for all $y \in f(M)$ is called the image of μ under f. Similarly, if ν is a fuzzy set in $f(M)$, then the fuzzy set $\mu = \nu \circ f$ in M (that is, the fuzzy set defined by $\mu(x) = \nu(f(x))$ for all $x \in M$) is called the preimage of ν under f.

THEOREM 8. A Γ-homomorphic preimage of a fuzzy left (right) ideal is a fuzzy left (right) ideal.

Proof. Let $\theta : M \rightarrow N$ be a Γ-homomorphism of Γ-rings, ν a fuzzy left ideal of N and μ the preimage of ν under θ. Then

\[
\mu(x - y) = \nu(\theta(x - y))
\]

\[
= \nu(\theta(x) - \theta(y))
\]

\[
\geq \min\{\nu(\theta(x)), \nu(\theta(y))\}
\]

\[
= \min\{\mu(x), \mu(y)\}
\]
and
\[\mu(x\alpha y) = \nu(\theta(x\alpha y)) \]
\[= \nu(\theta(x)\alpha \theta(y)) \]
\[\geq \nu(\theta(y)) \]
\[= \mu(y) \]
for all \(x, y \in M \) and \(\alpha \in \Gamma \).

We say that a fuzzy set \(\mu \) in \(M \) has the sup property ([5]) if, for any subset \(T \) of \(M \), there exists \(t_0 \in T \) such that
\[\mu(t_0) = \sup_{t \in T} \mu(t) \]

Theorem 9. A \(\Gamma \)-homomorphic image of a fuzzy left (right) ideal which has the sup property is a fuzzy left (right) ideal.

Proof. Let \(\theta : M \to N \) be a \(\Gamma \)-homomorphism of \(\Gamma \)-rings, \(\mu \) a fuzzy left ideal of \(M \) with the sup property and \(\nu \) the image of \(\mu \) under \(\theta \). Given \(\theta(x), \theta(y) \in \theta(M) \), let \(x_0 \in \theta^{-1}(\theta(x)) \), \(y_0 \in \theta^{-1}(\theta(y)) \) be such that
\[\mu(x_0) = \sup_{t \in \theta^{-1}(\theta(x))} \mu(t), \quad \mu(y_0) = \sup_{t \in \theta^{-1}(\theta(y))} \mu(t) \]
respectively. Then
\[\nu(\theta(x) - \theta(y)) = \sup_{z \in \theta^{-1}(\theta(x) - \theta(y))} \mu(z) \]
\[\geq \mu(x_0 - y_0) \]
\[\geq \min\{\mu(x_0), \mu(y_0)\} \]
\[= \min\{\sup_{t \in \theta^{-1}(\theta(x))} \mu(t), \sup_{t \in \theta^{-1}(\theta(y))} \mu(t)\} \]
\[= \min\{\nu(\theta(x)), \nu(\theta(y))\} \]
and for any \(\alpha \in \Gamma \),
\[\nu(\theta(x)\alpha \theta(y)) = \sup_{z \in \theta^{-1}(\theta(x)\alpha \theta(y))} \mu(z) \]
\[\geq \mu(x_0 \alpha y_0) \]
\[\geq \mu(y_0) \]
\[= \sup_{t \in \theta^{-1}(\theta(y))} \mu(t) \]
\[= \nu(\theta(y)) \].
This completes the proof.

References

Department of Mathematics Education
Gyeongsang National University
Chinju 660–701, Korea

Department of Mathematics Education
Kyungnam University
Masan 631–701, Korea