FUZZY RELATIONS ON BCK/BCI—ALGEBRAS

S. M. HONG AND Y. B. JUN

1. Introduction and preliminaries

The notion of a fuzzy subset and a fuzzy relation on a set was introduced by Zadeh ([6],[7]). Fuzzy relations on a group have been studied by Bhattacharya and Mukherjee ([1]). The concept of a fuzzy subalgebra of a BCK-algebra was introduced by Xi ([5]). In [3] the second author together with J. Meng solved the problem of classifying fuzzy subalgebras by their family of level subalgebras in BCK/BCI-algebras. In this paper we study fuzzy relations on BCK/BCI-algebras. We prove the following results. (i) If \(\mu \) and \(\sigma \) are fuzzy subalgebras of a BCK/BCI-algebra \(X \), then \(\mu \times \sigma \) is a fuzzy subalgebra of \(X \times X \). (ii) If \(\mu \times \sigma \) is a fuzzy subalgebra of \(X \times X \), then either \(\mu \) or \(\sigma \) is a fuzzy subalgebra of \(X \). (iii) If \(\sigma \) is a fuzzy subset of a BCK/BCI-algebra \(X \) and \(\mu_\sigma \) is the strongest fuzzy relation on \(X \) that is a fuzzy relation on \(\sigma \), then \(\mu_\sigma \) is a fuzzy subalgebra if and only if \(\sigma \) is a fuzzy subalgebra. An example is given to show that if \(\mu \times \sigma \) is a fuzzy subalgebra of \(X \times X \), then \(\mu \) and \(\sigma \) both need not be fuzzy subalgebras of \(X \).

We recall some definitions and results.

Definition 1.1. A fuzzy subset of any set \(S \) is a function \(\mu : S \to [0, 1] \).

Definition 1.2. ([2]) Let \(\mu \) be a fuzzy subset of a set \(S \). For \(t \in [0, 1] \), the set

\[
\mu_t := \{ x \in S | \mu(x) \geq t \}
\]

is called a level subset of \(\mu \).

Definition 1.3. ([3],[5]) Let \(X \) be a BCK/BCI-algebra. A fuzzy subset \(\mu \) of \(X \) is called a fuzzy subalgebra of \(X \) if for all \(x, y \in X \),

\[
\mu(x * y) \geq \min(\mu(x), \mu(y)).
\]

Received October 22, 1992.
Lemma 1.4. ([3]) Let \(X \) be a BCK/BCI-algebra and let \(\mu \) be a fuzzy subset of \(X \) such that \(\mu_t \) is a subalgebra of \(X \) for all \(t \in [0,1] \). Then \(\mu \) is a fuzzy subalgebra of \(X \).

Definition 1.5. ([3]) Let \(X \) be a BCK/BCI-algebra and let \(\mu \) be a fuzzy subalgebra of \(X \). The subalgebras \(\mu_t, t \in [0,1] \) and \(t \leq \mu(0) \), are called level subalgebras of \(\mu \).

Definition 1.6. ([1]) Let \(S \) be any set. A fuzzy relation \(\mu \) on \(S \) is a fuzzy subset of \(S \times S \), that is, a map \(\mu : S \times S \to [0,1] \).

Definition 1.7. ([1]) If \(\mu \) is a fuzzy relation on a set \(S \) and \(\sigma \) is a fuzzy subset of \(S \), then \(\mu \) is a fuzzy relation on \(\sigma \) if

\[\mu(x,y) \leq \min(\sigma(x),\sigma(y)) \]

for all \(x, y \in S \).

Definition 1.8. ([1]) Let \(\mu \) and \(\sigma \) be fuzzy subsets of a set \(S \). The Cartesian product of \(\mu \) and \(\sigma \) is defined by

\[(\mu \times \sigma)(x,y) = \min(\mu(x),\sigma(y)) \]

for all \(x, y \in S \).

Lemma 1.9. ([1]) Let \(\mu \) and \(\sigma \) be fuzzy subsets of a set \(S \). Then

(i) \(\mu \times \sigma \) is a fuzzy relation on \(S \),

(ii) \((\mu \times \sigma)_t = \mu_t \times \sigma_t \) for all \(t \in [0,1] \).

Definition 1.10. ([1]) If \(\sigma \) is a fuzzy subset of a set \(S \), the strongest fuzzy relation on \(S \) that is a fuzzy relation on \(\sigma \) is \(\mu_\sigma \), given by

\[\mu_\sigma(x,y) = \min(\sigma(x),\sigma(y)) \]

for all \(x, y \in S \).

Lemma 1.11. ([1]) For a given fuzzy subset \(\sigma \) of a set \(S \), let \(\mu_\sigma \) be the strongest fuzzy relation on \(S \). Then for \(t \in [0,1] \), we have that

\[(\mu_\sigma)_t = \sigma_t \times \sigma_t. \]
2. Fuzzy relations on BCK/BCI-algebras

Lemma 2.1. ([5]) If \(\mu \) is any fuzzy subalgebra of a BCK/BCI-algebra \(X \), then \(\mu(0) \geq \mu(x) \) for all \(x \in X \).

Proposition 2.2. Let \(\mu \) be a fuzzy subalgebra of a BCK/BCI-algebra \(X \) and let \(x \in X \). If \(\mu(x \ast y) = \mu(y) \) for every \(y \in X \), then \(\mu(x) = \mu(0) \).

Proof. For a fixed element \(x \in X \), suppose that \(\mu(x \ast y) = \mu(y) \) for every \(y \in X \). Choosing \(y = 0 \); then we have that \(\mu(x) = \mu(x \ast 0) = \mu(0) \).

Proposition 2.3. For a given fuzzy subset \(\sigma \) of a BCK/BCI-algebra \(X \), let \(\mu_\sigma \) be the strongest fuzzy relation on \(X \). If \(\mu_\sigma \) is a fuzzy subalgebra of \(X \times X \), then \(\sigma(x) \leq \sigma(0) \) for all \(x \in X \).

Proof. From the fact that \(\mu_\sigma \) is a fuzzy subalgebra of \(X \times X \), it follows from Lemma 2.1 that for every \(x \in X \),

\[
\mu_\sigma(x, x) \leq \mu_\sigma(0, 0),
\]

where \((0, 0) \) is the zero element of \(X \times X \). But (*) means that

\[
\min(\sigma(x), \sigma(x)) \leq \min(\sigma(0), \sigma(0)),
\]

which implies that \(\sigma(x) \leq \sigma(0) \).

The following proposition is an immediate consequence of Lemma 1.11, and we omit the proof.

Proposition 2.4. If \(\sigma \) is a fuzzy subalgebra of a BCK/BCI-algebra \(X \), then the level subalgebras of \(\mu_\sigma \) are given by \((\mu_\sigma)_t = \sigma_t \times \sigma_t \) for all \(t \in [0, 1] \).

Theorem 2.5. Let \(\mu \) and \(\sigma \) be fuzzy subalgebras of a BCK/BCI-algebra \(X \). Then \(\mu \times \sigma \) is a fuzzy subalgebra of \(X \times X \).

Proof. For any \((x, y), (u, v) \in X \times X \), we have that

\[
(\mu \times \sigma)((x, y) \ast (u, v))
= (\mu \times \sigma)(x \ast u, y \ast v)
\geq \min(\mu(x \ast u), \sigma(y \ast v))
\geq \min(\min(\mu(x), \mu(u)), \min(\sigma(y), \sigma(v)))
\geq \min(\min(\mu(x), \sigma(y)), \min(\mu(u), \sigma(v)))
= \min((\mu \times \sigma)(x, y), (\mu \times \sigma)(u, v)).
\]
This completes the proof.

Theorem 2.6. Let μ and σ be fuzzy subsets of a BCK/BCI-algebra X such that $\mu \times \sigma$ is a fuzzy subalgebra of $X \times X$. Then either μ or σ is a fuzzy subalgebra of X.

Proof. Assume that μ and σ both are not fuzzy subalgebras of X. Then

$$\mu(x \ast y) < \min(\mu(x), \mu(y)) \quad \text{and} \quad \sigma(u \ast v) < \min(\sigma(u), \sigma(v))$$

for some $x, y, u, v \in X$. Now

$$\begin{align*}
(\mu \times \sigma)((x, u) \ast (y, v)) &= (\mu \times \sigma)(x \ast y, u \ast v) \\
&= \min(\mu(x \ast y), \sigma(u \ast v)) \\
&< \min(\min(\mu(x), \mu(y)), \min(\sigma(u), \sigma(v)))) \\
&= \min(\min(\mu(x), \sigma(u)), \min(\mu(y), \sigma(v)))) \\
&= \min((\mu \times \sigma)(x, u), (\mu \times \sigma)(y, v)),
\end{align*}$$

which is a contradiction. This completes the proof.

Now we give an example to show that if $\mu \times \sigma$ is a fuzzy subalgebra of $X \times X$, then μ and σ both need not be fuzzy subalgebras of X.

Example. Let X be a nonzero BCK/BCI-algebra and let $t, s \in [0, 1]$ be such that $0 \leq s \leq t < 1$. Define fuzzy subsets $\mu, \sigma : X \to [0, 1]$ by $\mu(x) = s$ and

$$\sigma(x) = \begin{cases}
1 & \text{if } x = 0, \\
1 & \text{if } x \neq 0,
\end{cases}$$

for all $x \in X$, respectively. Then $(\mu \times \sigma)(x, y) = \min(\mu(x), \sigma(y)) = s$ for all $(x, y) \in X \times X$, that is, $\mu \times \sigma : X \times X \to [0, 1]$ is a constant function. Hence $\mu \times \sigma$ is a fuzzy subalgebra of $X \times X$. Now μ is a fuzzy subalgebra of X, but σ is not a fuzzy subalgebra of X since for $x \neq 0$ we have $\sigma(x \ast x) = \sigma(0) = t < 1 = \min(\sigma(x), \sigma(x))$.

THEOREM 2.7. Let σ be a fuzzy subset of a BCK/BCI-algebra X. Then σ is a fuzzy subalgebra of X if and only if μ_σ is a fuzzy subalgebra of $X \times X$.

Proof. (\Rightarrow) Assume that σ is a fuzzy subalgebra of X. We claim that for any $(x_1, x_2), (y_1, y_2) \in X \times X$,

$$\mu_\sigma((x_1, x_2) \ast (y_1, y_2)) \geq \min(\mu_\sigma(x_1, x_2), \mu_\sigma(y_1, y_2)).$$

Since σ is a fuzzy subalgebra, we have that

$$\sigma(x_1 \ast y_1) \geq \min(\sigma(x_1), \sigma(y_1))$$

and

$$\sigma(x_2 \ast y_2) \geq \min(\sigma(x_2), \sigma(y_2)).$$

Hence

$$\mu_\sigma((x_1, x_2) \ast (y_1, y_2))$$

$$= \mu_\sigma(x_1 \ast y_1, x_2 \ast y_2)$$

$$= \min(\sigma(x_1 \ast y_1), \sigma(x_2 \ast y_2))$$

$$\geq \min(\min(\sigma(x_1), \sigma(y_1)), \min(\sigma(x_2), \sigma(y_2)))$$

$$= \min(\min(\sigma(x_1), \sigma(y_2))), \min(\sigma(y_1), \sigma(y_2)))$$

$$= \min(\mu_\sigma(x_1, x_2), \mu_\sigma(y_1, y_2)),$$

and so the necessity is completed.

(\Leftarrow) Suppose that μ_σ is a fuzzy subalgebra of $X \times X$. Let $x_i, y_i \in X; i = 1, 2$. Then

$$\mu_\sigma(x_1 \ast y_1, x_2 \ast y_2) = \mu_\sigma((x_1, x_2) \ast (y_1, y_2))$$

$$\geq \min(\mu_\sigma(x_1, x_2), \mu_\sigma(y_1, y_2)).$$

This means that

$$\min(\sigma(x_1 \ast y_1), \sigma(x_2 \ast y_2)) \geq \min(\min(\sigma(x_1), \sigma(x_2)), \min(\sigma(y_1), \sigma(y_2))),$$

which implies that

$$\sigma(x_1 \ast y_1) \geq \min(\min(\sigma(x_1), \sigma(x_2)), \min(\sigma(y_1), \sigma(y_2))).$$

In particular, if we take $x_2 = 0 = y_2$, then by Proposition 2.3,

$$\sigma(x_1 \ast y_1) \geq \min(\min(\sigma(x_1), \sigma(0)), \min(\sigma(y_1), \sigma(0)))$$

$$= \min(\sigma(x_1), \sigma(y_1)).$$

Hence σ is a fuzzy subalgebra of X.
References

Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea