WEAK CONVERGENCE TO FIXED POINTS OF ALMOST-ORBITS OF NONLIPSCHITZIAN SEMIGROUPS

TAE-HWA KIM, MAN-DONG HUR AND NAK-EUN CHO

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $s \mapsto a \cdot s$ and $s \mapsto s \cdot a$ from G to G are continuous. G is called right reversible if any two closed left ideals of G have nonvoid intersection. In this case, (G, \geq) is a directed system when the binary relation "\geq" on G is defined by

$$t \geq s \quad \text{if and only if} \quad \{s\} \cup \bar{G}s \supseteq \{t\} \cup \bar{G}t, \quad s, t \in G.$$

Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups (see [4, p.335]). Left reversibility of G is defined similarly. G is called reversible if it is both left and right reversible.

Let G be a semitopological semigroup with a binary relation "\geq" which directs G. Let C be a nonempty closed convex subset of a real Banach space E and let a family $\mathcal{S} = \{S(t) : t \in G\}$ be a (continuous) representation of G as continuous mappings on C into C, i.e., $S(ts)x = S(t)S(s)x$ for all $t, s \in G$ and $x \in C$, and for every $x \in C$, the mapping $t \mapsto S(t)x$ from G into C is continuous. In this paper, we also consider a non-Lipschitzian semigroup of continuous mappings : a representation $\mathcal{S} = \{S(t) : t \in G\}$ of G on C is said to be a semigroup of asymptotically nonexpansive type (simply, a.n.t.) on C if, for each $x \in C$,

$$\inf_{s \in G} \sup_{t \geq s} \sup_{y \in C} (\|S(t)x - S(t)y\| - \|x - y\|) \leq 0.$$

Received March 30, 1992.
Immediately, we can see that the semigroups of a.n.t. include all semigroups of nonexpansive mappings with directed systems. \(\mathcal{G} = \{S(t) : t \in G\} \) is called reversible [resp., right(left) reversible] if \(G \) is reversible [resp., right(left) reversible]. For a mapping \(S : C \to C \), we define \(S(n) = S^n \) for each \(n \in G = N \), where \(N \) denotes the set of natural numbers. Then, when the semigroup \(\mathcal{G} = \{S(n) : n \in G\} \) is of a.n.t., the mapping \(S : C \to C \) is simply said to be of a.n.t. In particular, if \(\mathcal{G} = \{S(t) : t \in G\} \) is a Lipschitzian representation of \(G \) with an additional condition, i.e., \(\limsup_t k_t \leq 1 \) (see [7]), and if \(C \) is bounded, then it is obviously of a.n.t. And we say that a function \(u : G \to C \) is an almost-orbit of \(\mathcal{G} = \{S(t) : t \in G\} \) (see [1], [7]) if \(G \) is right reversible and

\[
\lim_{t} \left(\sup_{s \in G} \|u(st) - S(s)u(t)\| \right) = 0.
\]

In [7], Takahashi-Zhang established the weak convergence of an almost-orbit of a noncommutative Lipschitzian semigroup in a Banach space. And in [6], Lau-Takahashi proved the nonlinear ergodic theorems for a noncommutative nonexpansive semigroup in the space. In this paper, we shall establish the weak convergence to a fixed point of an almost-orbit \(\{u(t) : t \in G\} \) of the right reversible semigroup \(\mathcal{G} = \{S(t) : t \in G\} \) of a.n.t. in a uniformly convex Banach space with a Fréchet differentiable norm, which extends the result according to Takahashi-Zhang [7].

2. Preliminaries and some lemmas

Let \(C \) be a nonempty closed convex subset of a real Banach space \(E \) and let \(G \) be a semitopological semigroup with a binary relation "\(\preceq \)" which directs \(G \). A family \(\mathcal{G} = \{S(t) : t \in G\} \) of continuous mappings from \(C \) into itself is said to be a (continuous) representation of \(G \) on \(C \) if \(\mathcal{G} \) satisfies the following:

(a) \(S(ts)x = S(t)S(s)x \) for all \(t, s \in G \) and \(x \in C \);

(b) for every \(x \in C \), the mapping \(t \mapsto S(t)x \) from \(G \) into \(C \) is continuous. A representation \(\mathcal{G} = \{S(t) : t \in G\} \) of \(G \) on \(C \) is said to be a semigroup of asymptotically nonexpansive type (simply, a.n.t.) on \(C \) if, for each \(x \in C \),

\[
\inf_{s \in G} \sup_{t \succeq s} \sup_{y \in C} \left(\|S(t)x - S(t)y\| - \|x - y\| \right) \leq 0.
\]
Immediately, we can see that the semigroups of a.n.t. include all semigroups of nonexpansive mappings with directed systems. In particular, if \(\mathcal{S} = \{ S(t) : t \in G \} \) is a Lipschitzian representation of \(G \) with an additional condition, i.e., \(\limsup k_t \leq 1 \) (see [7]), and if \(C \) is bounded, then it is obviously of a.n.t.

Let \(G \) be a semitopological semigroup, i.e., \(G \) is a semigroup with a Hausdorff topology such that for each \(a \in G \) the mappings \(s \mapsto a \cdot s \) and \(s \mapsto s \cdot a \) from \(G \) to \(G \) are continuous. \(G \) is called right reversible if any two closed left ideals of \(G \) have nonvoid intersection. In this case, \((G, \unrhd)\) is a directed system when the binary relation \(\unrhd \) on \(G \) is defined by

\[
t \unrhd s \quad \text{if and only if} \quad \{s\} \cup \overline{Gs} \supseteq \{t\} \cup \overline{Gt}, \quad s, t \in G.
\]

Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups (see [4, p.335]). Left reversibility of \(G \) is defined similarly. \(G \) is called reversible if it is both left and right reversible.

In particular, if \(G \) is right reversible, and if \(\mathcal{S} = \{ S(t) : t \in G \} \) is a semigroup of a.n.t. on \(C \), then a function \(u : G \rightarrow C \) is called an almost-orbit of \(\mathcal{S} = \{ S(t) : t \in G \} \) if

\[
\lim_{t \to 0} \left(\sup_{s} \| u(st) - S(s)u(t) \| \right) = 0.
\]

With each \(x \in E \), we associate the set

\[
J(x) = \{ x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \}.
\]

Using the Hahn-Banach theorem it is immediately clear that \(J(x) \neq \emptyset \) for any \(x \in E \). The multivalued operator \(J : E \rightarrow 2^{E^*} \) is called the duality mapping of \(E \). The norm of \(E \) is said to be Gâteaux differentiable (and \(E \) is said to be smooth) if for each \(x, y \in S \),

\[
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}
\]

exists, where \(S \) denotes the unit sphere of \(E \). It is said to be Fréchet differentiable if, for each \(x \in S \), this limit (2.4) is attained uniformly for
Then it is well-known that if E is smooth, the duality mapping J is single-valued. We also know that if E has a Fréchet differentiable norm, then J is norm to norm continuous.

In order to measure the degree of strict convexity (rotundity) of E, we define its modulus of convexity $\delta : [0, 2] \to [0, 1]$ by

$$\delta(\varepsilon) = \inf \left\{ 1 - \frac{1}{2} \| x + y \| : \| x \| \leq 1, \| y \| \leq 1, \text{ and } \| x - y \| \geq \varepsilon \right\}.$$

The characteristic of convexity ε_\ast of E is also defined by

$$\varepsilon_\ast = \varepsilon_\ast(E) = \sup \{ \varepsilon : \delta(\varepsilon) = 0 \}.$$

It is well-known (see [3]) that the modulus of convexity δ satisfies the following properties:

$$(a) \quad \delta \text{ is increasing on } [0, 2], \text{ and moreover strictly increasing on } [\varepsilon_\ast, 2];$$

$$(b) \quad \delta \text{ is continuous on } [0, 2] \text{ (but not necessarily at } \varepsilon = 2);$$

$$(c) \quad \delta(2) = 1 \text{ if and only if } E \text{ is strictly convex;}$$

$$(d) \quad \delta(0) = 0 \text{ and } \lim_{\varepsilon \to 2-} \delta(\varepsilon) = 1 - \frac{1}{2} \varepsilon_\ast;$$

$$(e) \quad \| a - x \| \leq r, \| a - y \| \leq r \text{ and } \| x - y \| \geq \varepsilon \Rightarrow \| a - \frac{1}{2}(x + y) \| \leq r(1 - \delta(\varepsilon/r)).$$

A Banach space E is said to be uniformly convex if $\delta(\varepsilon) > 0$ for all positive ε; equivalently $\varepsilon_\ast = 0$. Obviously, any uniformly convex space is both strictly convex and reflexive. By properties above, we can see that if E is uniformly convex, then δ is strictly increasing and continuous on $[0, 2]$ (see [2]).

It is easy that if G is right reversible and $u = \{ u(t) : t \in G \}$ is an almost-orbit of the semigroup $\mathcal{G} = \{ S(t) : t \in G \}$ of a.n.t., then $F(\mathcal{G}) \subseteq E(u)$, where $E(u) = \{ y \in C : \lim_{t \to t_0} \| u(t) - y \| \text{ exists} \}$ and $F(\mathcal{G})$ denotes the set of all common fixed points of \mathcal{G}.

Lemma 2.1. Let C be a nonempty closed convex of a uniformly convex Banach space E. Let G be right reversible and let $\mathcal{G} = \{ S(t) : t \in G \}$ be a semigroup of a.n.t. on C. Let $u = \{ u(t) : t \in G \}$ be an almost-orbit of \mathcal{G}. Suppose $F(\mathcal{G}) \neq \emptyset$ and let $y \in F(\mathcal{G})$ and $0 < \alpha \leq \beta < 1$. Then, for any $\varepsilon > 0$, there is $t_\ast \in G$ such that

$$\| S(t_\ast)(\lambda u(s) + (1 - \lambda)y) - (\lambda S(t_\ast)u(s) + (1 - \lambda)y) \| < \varepsilon$$
for all $t, s \geq t_*$ and $\lambda \in [\alpha, \beta]$.

Proof. Let $\epsilon > 0$, $c = \min \{2\lambda(1 - \lambda) : \alpha \leq \lambda \leq \beta\}$ and let $r = \lim ||u(t) - y||$. If $r = 0$, since $\mathcal{S} = \{S(t) : t \in G\}$ is of a.n.t. on C, there exists $t_* \in G$ such that

$$||y - S(t)z|| < ||y - z|| + \frac{\epsilon}{4}$$

and

$$||u(t) - y|| < \frac{\epsilon}{4} \quad \text{for } t \geq t_* \text{ and } z \in C.$$

Hence, for $s, t \geq t_*$ and $0 \leq \lambda \leq 1$,

$$||S(t)(\lambda u(s) + (1 - \lambda)y) - (\lambda S(t)u(s) + (1 - \lambda)y)||$$

$$\leq ||S(t)(\lambda u(s) + (1 - \lambda)y) - y|| + \lambda||S(t)u(s) - y||$$

$$\leq 2(||u(s) - y|| + \frac{\epsilon}{4}) < \epsilon.$$

Now, let $r > 0$. Then we can choose $d > 0$ so small that

$$(r + d)[1 - c\delta(\frac{\epsilon}{r + d})] = r_* < r,$$

where δ is the modulus of convexity of E. On taking $a > 0$ with $a < \min \{\frac{d}{2}, \frac{r - r_*}{2}\}$, there exists $t_* \in G$ such that

(2.8) $r - a < ||u(t) - y|| < r + a,$

(2.9) $||y - S(t)z|| < ||y - z|| + \frac{c}{4}d,$

and

(2.10) $||u(st) - S(s)u(t)|| \leq a,$

for all $t \geq t_*, s \in G$ and $z \in C$. Suppose that

$$||S(t)(\lambda u(s) + (1 - \lambda)y) - (\lambda S(t)u(s) + (1 - \lambda)y)|| \geq \epsilon$$
for some $s,t \geq t_*$ and $\lambda \in [\alpha, \beta]$. Put $z = \lambda u(s) + (1 - \lambda)y$, $u = (1 - \lambda)(S(t)z - y)$ and $v = \lambda(S(t)u(s) - S(t)z)$. Then, by (2.8) and (2.9), we have

$$
\|u\| \leq (1 - \lambda)(\|y - z\| + \frac{c}{4}d)
= (1 - \lambda)(\lambda\|u(s) - y\| + \frac{c}{4}d)
< (1 - \lambda)(\lambda(r + \frac{d}{2}) + \frac{c}{4}d)
< \lambda(1 - \lambda)(r + d)
$$

and

$$
\|v\| < \lambda(1 - \lambda)(r + d).
$$

We also have that

$$
\|u - v\| = \|S(t)z - (\lambda S(t)u(s) + (1 - \lambda)y)\| \geq \varepsilon
$$

and $\lambda u + (1 - \lambda)v = \lambda(1 - \lambda)(S(t)u(s) - y)$. So, by uniform convexity of E, we have

$$
\lambda(1 - \lambda)\|S(t)u(s) - y\| = \|\lambda u + (1 - \lambda)v\|
\leq \lambda(1 - \lambda)(r + d)[1 - 2\lambda(1 - \lambda)\delta(\frac{\varepsilon}{r + d})]
\leq \lambda(1 - \lambda)r_*,
$$

and hence $\|S(t)u(s) - y\| \leq r_*$. Then, it follows from (2.10) that

$$
\|u(t_*) - y\| \leq \|u(t_*) - S(t)u(s)\| + \|S(t)u(s) - y\|
< \alpha + r_* < r - \alpha,
$$

which contradicts to (2.8) and the proof is complete.

For $z, y \in E$, we denote by $[x, y]$ the set $\{\lambda x + (1 - \lambda)y : 0 \leq \lambda \leq 1\}$. The following lemma was proved by Lau-Takahashi [6, Lemma 3].

Lemma 2.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm and let $\{x_\alpha\}$ be a bounded net in C. Let $z \in \bigcap_{\beta}cl\{x_\alpha : \alpha \geq \beta\}$, $y \in C$ and $\{y_\alpha\}$ a net of elements in C with $y_\alpha \in [y, x_\alpha]$ and

$$
\|y_\alpha - z\| = \min\{\|u - z\| : u \in [y, x_\alpha]\}.
$$

If $y_\alpha \to y$, then $y = z$.
3. Weak convergence theorem

In this section, we study the weak convergence of an almost-orbit \(\{u(t) : t \in G\} \) of \(\mathcal{G} = \{S(t) : t \in G\} \) in a uniformly convex Banach space \(E \) with a Fréchet differentiable norm. By using Lemma 2.1 and Lemma 2.2, we obtain the similar result as Theorem 2 of [6] for the semigroup \(\mathcal{S} := \{S(t) : t \in G\} \) of asymptotically nonexpansive type.

THEOREM 3.1. Let \(E \) be a uniformly convex Banach space with a Fréchet differentiable norm and let \(C \) be a nonempty closed convex subset of \(E \). Let \(G \) be right reversible and let \(\mathcal{G} = \{S(t) : t \in G\} \) be a semigroup of a.n.t. on \(C \). Suppose that \(u = \{u(t) : t \in G\} \) is an almost-orbit of \(\mathcal{G} \) and \(F(\mathcal{G}) \neq \emptyset \). Then the set \(\bigcap_s \overline{co}\{u(t) : t \geq s\} \cap F(\mathcal{G}) \)

consists of at most one point.

Proof. Let \(W(u) = \bigcap_s \overline{co}\{u(t) : t \geq s\} \). Suppose that \(f, g \in W(u) \cap F(\mathcal{G}) \) and \(f \neq g \). Put \(h = (f + g)/2 \) and \(r = \liminf_s \|u(s) - g\| \) by Lemma 2.1. Since \(h \in W(u) \), we have \(\|h - g\| \leq r \). For each \(s \in G \), choose \(p_s \in [u(s), h] \) such that

\[
\|p_s - g\| = \min\{\|y - g\| : y \in [u(s), h]\}.
\]

By the definition of \(p_s \), we have \(\|p_s - g\| \leq \|(p_s + h)/2 - g\| \leq \|h - g\| \) for all \(s \in G \). If \(\liminf_s \|p_s - g\| = \|h - g\| \), then \(\{p_s\} \) converges strongly to \(h \). Hence, by Lemma 2.2, we have \(h = g \). This contradicts \(f \neq g \).

To complete the proof, we suppose that

\[
\liminf_s \|p_s - g\| < \|h - g\|.
\]

Then there exist \(c > 0 \) and \(t_\alpha \in G \) such that \(t_\alpha \geq \alpha \) and

\[
\|p_{t_\alpha} - g\| + c < \|h - g\| \quad \text{for every} \quad \alpha \in G.
\]

Put \(p_{t_\alpha} = a_\alpha u(t_\alpha) + (1 - a_\alpha)h \) for every \(\alpha \). Then there is \(\beta > 0 \) and \(\gamma < 1 \) such that \(\beta \leq a_\alpha \leq \gamma \) for every \(\alpha \). By (2.1), (2.2), and Lemma 2.1, there exists \(\alpha_0 \in G \) such that

\[
\|g - S(s)z\| < \frac{c}{3} + \|g - z\|,
\]

\[
\|u(st) - S(s)u(t)\| < \frac{c}{3},
\]

and
\[\|S(s)(\lambda u(t) + (1 - \lambda)h) - (\lambda S(s)u(t) + (1 - \lambda)h)\| < \frac{\epsilon}{3}, \]

for all \(s, t \geq \alpha_o, \ z \in C \) and \(\lambda \in [\beta, \gamma]. \) For \(s \geq \alpha_o, \) since \(t_{\alpha_o} \geq \alpha_o, \) the above inequalities imply that

\[\|p_{st_{\alpha_o}} - g\| \leq \|a_{\alpha_o}u(st_{\alpha_o}) + (1 - a_{\alpha_o})h - g\| \]
\[\leq a_{\alpha_o}\|u(st_{\alpha_o}) - S(s)u(t_{\alpha_o})\| + \|S(s)p_{t_{\alpha_o}} - (a_{\alpha_o}S(s)u(t_{\alpha_o}) + (1 - a_{\alpha_o})h)\| + \|S(s)p_{t_{\alpha_o}} - g\| < \|h - g\|. \]

Let \(\beta_o = \alpha_o t_{\alpha_o} \) and \(t \geq \beta_o. \) Then, since \(G \) is right reversible, \(t \in \{ \beta_o \} \cup G \beta_o, \) we may assume \(t \in G \beta_o. \) Let \(\{t_o\} \) be a net in \(G \) such that \(t_o \beta_o \to t. \) Then, \(t = st_{\alpha_o}, \ s = \lim_{o} t_{o} \alpha_o \in G \alpha_o \) and hence \(s \geq \alpha_o. \)

Therefore, we obtain \(\|p_t - g\| < \|h - g\| \) for all \(t \geq \beta_o. \) So, we have \(p_t \neq h \) for all \(t \geq \beta_o. \) Now let \(t \geq \beta_o \) and \(u_k = k(h - p_t) + p_t \) for all \(k \geq 1. \) Then \(\|u_k - g\| \geq \|h - g\| \) for all \(k \geq 1 \) and hence \(\langle h - u_k, J(g - h) \rangle \geq 0 \) for all \(k \geq 1, \) where \(J \) is the duality mapping of \(X \) and \(\langle x, f \rangle \) denotes the value of \(f \in X^* \) at \(x \in X. \) Then, since \(p_t \in [u(t), h], \) it easily follows that \(\langle h - u(t), J(g - h) \rangle \leq 0 \) for all \(t \geq \beta_o. \) Immediately, we obtain \(\langle h - y, J(g - h) \rangle \leq 0 \) for all \(y \in \overline{\alpha_o}\{u(t) : t \geq \beta_o\}, \) and hence \(h = g. \) This contradicts \(f \neq g \) and so the proof is complete.

As a direct consequence, we present the following weak convergence of an almost-orbit \(\{u(t) : t \in G\}. \)

Theorem 3.2. Let \(E \) be a uniformly convex Banach space with a Fréchet differentiable norm and let \(C \) be a nonempty closed convex subset of \(E. \) Let \(G \) be right reversible and \(\mathfrak{S} = \{S(t) : t \in G\} \) be a semigroup of a.n.t. on \(C. \) Suppose that \(F(\mathfrak{S}) \neq \emptyset \) and let \(\{u(t) : t \in G\} \) be an almost-orbit of \(\mathfrak{S}. \) If \(\omega_w(u) \subseteq F(\mathfrak{S}), \) then the net \(\{u(t) : t \in G\} \) converges weakly to an element of \(F(\mathfrak{S}). \)

Proof. Be similar to Theorem 3 of [7].

References

Weak convergence to fixed points of almost-orbits

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608–737, Korea.