Pusan Kyéngnam Math. J. 7(1991), Ne. 2, pp. 137-142

REGULAR ACTION IN A UNIT-REGULAR RING

JUNCHEOL HAN

1. Introduction and Basic Definitions

Let R be a ring with identity and let G denote the group of units of
R and X denote the set of nonzero, nonunits of R. We call the action,
(g,7) — gr from G x R to R, the regular action. Clearly, X is invariant
under the action.

If f: GxX — X is a group action on X, for each = in X, we define
the orbit 0(z) by, 0(z) = {f(g,z)|lg € G}. G is said to be transive on
X if there is an z in X with 0(z) = X and G is said to be half-transive
on X if G is tramstve-on X or 0(z) is finite-and-[0{z)] = |6(y)| > 1 for
all z and y in X.

It 1s easyly shown that if a ring R with identity has finite nonzero
number of nontrivial idempotents of R, then the number is even. An
idempotent e in a ring R is called primitive if it cannot be written as
the sum of two orthogonal nonzero idempotents, and is called central
if it is contained in the center of R.

A ring R is called regular (resp. unit-regular) if for each z in R,
there is an elememt » in R (resp. unit v in G) such that zuz = 2.
A regular ring R is abelian if all idempotents in R are central. It was
already shown in [2,Corollary 4.2, p.38] that every abelian regular ring
1s unit-regular.

In section 2, we show that if R is a unit-regular ring and R has no
nontrivial idempotents, then R is a division ring. We also show that in
case that R is a unit-regular ring such that G acts on X by the regular
action and R has a finite nonzero number of nontrivial idempotents,
if |0(z)] = 1 for all z in X or G is half-transitive on X, then R is
finite. In particular, if a unit-regular ring R has two or four nontrivial
idempotents which are central, then R is isomorphic to the product of
two finite fields which are isomorphic to each other.
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2. The regular action in a unit-regular ring

The following theorem has been proved in [4].

THEOREM 2.1. If R is any ring having only n + 1 left (right) zero-
divisors, where n is positive integer, then R is necessarily finite and
does not contain more than (n + 1)* elements.

LEMMA 2.2. Let R be a ring with unity 1 and let E be the set of
all nontrivial idempotents in R. If E is a nonempty finite set, then |E|
is even.

Proof. It is clear that for each e € E, 1 - ¢ € E. Assume that
e = 1—e Then 1 = 2¢. If char(R) = 2, then 1 = 2e = 0, a
contradiction. If char(R) # 2, then e is invertible, a contradiction.
Hence for each e € E, e # 1 — e. Therefore |E| is even.

LEMMA 2.3. Let R be a unit-regular ring. If R has no nontrivial
idempotents, then R is a division ring.

Proof. For any nonzero X in R, there is a unit u in R such that
zuz = z. Then zu and uz are idempotents of R. By assumption,
zu = ux = 1. Therefore R is a division ring,.

LEMMA 2.4. Let R be a unit-regular ring. Then for alla € R, a is
a unit or a is a zero divisor.

Proof. Suppose @ € R is not unit. Since R is unit-regular, there
exists a unit u € R such that aua = q, so 0 = a(ue — 1) = (au — 1)a.
If ua = 1, then a = u™!, a contradiction. Hence ua — 1 # 0, which
means that e is right zero-divisor. Similarly, we can show that a is left
zero-divisor.

LEMMA 2.5. Let R be a unit-regular ring such that G acts on X
where G is the set of units in R and X is the set of nonzero, nonunits
in R. H|0(z)] =1 for all z € X, then every x € X is nontrivial
idempotent of R.

Proof. Assume that there exists a z € X, which is not nontrivial
idempotent. Then there exists a unit v € G such that uz is a non-
trivial idempotent of R. Since |0(z)| = 1 for all z € X, uz = z, a
contradiction.
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COROLLARY 2.6. Let R be a unit-regular ring such that G acts on
X and let E be the set of nontrivial idempotents in R. If 0 # |E| is
finite and [0(z)] = 1 for all z € X, then R is a finie ring.

Proof. Tt follow frem Theorem 2.1 and Lemma 2.5.
The following Lemma has been preved in {1].

LEMMA 2.7. Let R be a ring with identity such that G is half-
transitive on X by the regular action. If R is not a local ring and A/J

(J is the Jacobson radical of R} contains a nontrivial idempotent, then
G is a finite group.

LEMMA 2.8. Let R be a unit-regular ring such that G acts on X
by the regular action and let E be the set of nontrivial idempotents in
R. If 0 # |E| is finite, then there exist z,,%2, - ,zn € X such that
X = 0{(z1)UO(z2) - UO(zn)- In particular, if |0(z)] = [0(y)| = s for
all z,y € X and for some-positive integer s, then {X| = s{E|.

Proof. For all z € X, there exixts u; € G such that u.z is a nontriv-
ial idempotent in R. Since {E| is finite, say u;%y,u2T2, - ,unT, Where
u, € Gand z, € X(1 <i < n=|E|),foreach z € X\{z1,22, -+ ,Zn},
UzT = u,7, for some 1. So x = u; u;z, and then z € 0(z,). Hence X =
0(z1)U0(z2)U- - -UB(z,) and so | X| = [0(z )] +]0{z2)|+- - - +]|0(zn)|. In
particular, if |[0(z)| = [0(y)] = s for all z,y € R, then [X| = sn = s|E|.

THEOREM 2.9. Let R be a unit-regular ring such that G is half-
transitive on X and let E be the set of nontnivial idempotents in R. If
0 # |E| is finite, then R is a finite ring.

Proof. It follows from Lemma 2.2 and Lemma 2.7 that G is finite.
Since G is finite, if G is transitive on X, then X is finite. So by Theorem
2.1, R is finite ring. Suppose that G is not transitive on X but G is
half-transitive on X. By lemma 2.3, X = 0(z1)U0{(z2) U --- U 0(zn)
for some z, € X(1 < 1 < n = [E}). Since 0(z,) is finite, {X| =
|0(z1)} + [0(z2)] + - - - + |0{z )], so X is finite. Therefore, by Theorem
2.1, R is a finite ring.

LEMMA 2.10. Let R be a ring with identity. Then the idempotent

e # 0 of R is primitive if and only if e Re contains no idempotents other
than 0 and e,
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Proof. (=) Suppose that e # 0 of R is primitive. Let f € eRe be
an idempotent. Then f = ere for some r € R. Clearly ef = f = fe
and{e—f)) =e— fandalso(e—f)f =ef —f2=f—f =0 and
fle—f)=0.80ce=(e—f)+ f,and (e— f)f = fe— f) = 0. Since e
is primitive, e ~ f = 0 or f = 0. Hence eRe contains no idempotents
other than @ and e.

(<=) Suppose that eRe contains no idempotents other than 0 and e.
Assume that e = e; + e, where €163 = ege; = 0, €2 = ¢; and €2 = e;.
Since eje = ¢; € Re and ce; =¢; € ¢R,

e1 = e] = ere; = (eer)(eie) € (eR)(Re) C eRe.

Similarly, e; € eRe. By assumption, since e Re contains no idempotent
other than 0 and e, e; = 0 or e; = e. Hence e is primitive.

LemMA 2.11. Let R be a regular ring with identity. Then ¢ isa
primitive idempotent in R iff eRe is a division ring.

Proof. (=) If e is a primitive idempotent in R, by Lemma 2.10, eRe
contains no tdempotent other than 0 and e. For x # 0 € eRe, consider
right ideal zR of R. Since R is regular, zR = (t) for some idempotent
t € eR. By assumption, t = e and so zr = ¢ for some r € R. We can
note that (rz)(rz) = r(axr)z = rex = rz and also rz = ¢. Hence z is
invertible in eRe, and so eRe 1s a division ring.

(<) It is enough to show that eRe has no idempotents other than
e and 0 by Lemma 2.10. Let f = f% € eRe. Then f(e — f} = 0. Since
eRe is a division ring, f =0 ore— f = 0.

LEMMA 2.12. Let R be a regular ring with identity let E be the set
of nontrivial idempotents in R. If |E| = 2 or 4, then every element of
E is primitive.

Proof. If E = 2, then clearly every element of FE is primitive. Sup-
pose that E = 4. Let e,1 — e, f, and 1 — f be all dictinct elements of
E. We will show that e is primitive idempotent of R. Assume that e
is not primitive idempotent of R. Then we have two possibilities that
e can be written as the sum of two orghogonal nonzero idempotents
say, e = {1 —e})+ fore =(1—e)+ (1~ f) Then the equality
e = (1 — e} + f implies that e = f, a contradiction. Also the equality
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e ={1-e)+(1— f)implies that 1 —e = f, a contradiction. Similarly
we can show that 1 — e, f,1 — f are primitive.

Recall that a regular ring R is abelian if every idempotent is central.

THEOREM 2.13. Let R be an abelian regular ring such that G is
half-transitive on X and let E be the set of nontrivial idempotents in
R. If E =2 or 4, then R is a direct sum of two finite fields F| and F3
where F; is isomorphic to F.

Proof. By Lemmma 2.12 and assumption, all element of E are prim-
itive and central. Thus R = eR @ (1 — e¢)R for some ¢ € E. By
Lemma 2.9, R is finite. By Lemma 2.11, since e is primitive, eR and
(1 — ¢)R are finite fields. Clearly, the function er — (1 — e)r defined

by er — (1 —e)r for all er € eR, is a ring isomorphism. Hence we have
the result.

COROLLARY 2.14. Let R be a unit-regular ring such that G is tran-
sitive on X and let E be the set of nontrivial idempotents in R. If
0 # |E| is finite, then R = M;(F\) ® My(F,) @ --- & Mi(Fy) with
[Fy™ oo« |Fe|™ < |G|+ 1 where M,(F,) is the ring of all n, x n,
matrices over a finite field F, for: =1,2,.-. .k and k is some positive
integer.

Proof. By Theorem 2.9, R is finite. Since G is transitive on X,
|X| < |G]. Since R is finite and semisimple, by the Wedderburn -
Artin Theorem, we have that R ~ M (F}) & My(F2) @ - - - & Mi(Fy)
where M,(F)) is the ring of all n, X n; matrices over a finite field F;
for 1 =1,2,-.- ,k and k is some positive integer. Hence it follows from

Theorem 2.1 that |F1j* --... {Fe|™ <{G|+ 1.

COROLLARY 2.15. Let R be a abelian regular ring such that G is
transitive on X and let E be the set of nontrivial idempotents in R. If
0 # |E} is finite, then R ~ Fy @ F,®- - -® F}, with |R| < (|G|+1)? where
F, is a finite field for1 = 1,2,--- , k and k is some positive integer.

Proof. Since abelian regualr ring R is unit-regualr and every idem-
potents in R is central, it must be n, = 1 in the proof of Corollary 2.14
for each 1 = 1,2,--- , k. Hence we have the result.



142 Juncheol Han

COROLLARY 2.16. Let R be a unit-regular ring such that G is not
transitive but is half-transitive on X and let E be the set of nontrivial
idempotents in R. If 0 # |E| is finite, then R = M(F;) @ Ma(F3) @
oo @ My(Fy) with |[Fy|™ - -- - |Fx{™* < (s|E{+ 1) where [0(z)| = s for
all z € X and M,(F,) is the ring of all n; X n, matrices over a finite
field F, fori =1,2,--- |k and k is some positive integer.

Proof. By Theorem 2.9, R is also finite. Since G is not transitive
on X but is half-transitive on X, by Theorem 2.8, |X| = s|E| where
|0(z)| = s for all z € X. Since R is finite and semisimple, as proof in
the Corollary 2.14, R =~ M (F1 )Mz (F2)®- - - @ Mi(Fi) where M(F,)
is the ring of all n, X n, matrices over a finite field F; fori = 1,2,--- |k
and k is some positive integer. Hence it follows from Theorem 2.1 that
FIUCREREE |Fe[™ < (s|E] +1).

COROLLARY 2.17. Let R be an abelian regular ring such that G is
not transitive on X but half-transitive on X and let E be the set of”
nontrivial idempotents in R. If 0 # |Ej is finite, then R~ F, & F, &
---@Fy with |R| < (s|E|+1)? where F, is a finite field for: = 1,2, , k
and k is some positive integer and s = |0(z)| for all z € X.

Proof. Similar to the proof of Corollary 2.15.
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