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REGULAR ACTION IN A UNIT-REGULAR RING

Juncheol Han

1. Introduction and Basic Definitions
Let 7? be a ring with identity and let G denote the group of units of 

R and X denote the set of nonzero, nonunits of R. We call the action, 
(g,r) —> gr from Gx R to the regular action. Clearly, X is invariant 
under the action.

If f :GxX — Xisa group action on X、for each x in X、we define 
the orbit 0(z) by, 0(x) = {/(p, x)\g £ (구}. G is said to be transive on 
X if there is an c in X with 0(x) = X and G is said to be half^transive 
on X if G is transive on X or 0(b) islhrite^and jO^x)j = |0(y)| > 1 for 
all x and y in X.

It is easyly shown that if a ring R with identity has finite nonzero 
number of nontrivial idempotents of R, then the number is even. An 
idempotent e in a ring R is called primitive if it cannot be written as 
the sum of two orthogonal nonzero idempotents, and is called central 
if it is contained in the center of R.

A ring R is called regular (resp. unit-regular) if for each x in R, 
there is an elememt u in R (resp. unit u in (구) such that xux = x. 
A regular ring R is abelian if all idempotents in R are central. It was 
already shown in [2,Corollary 4.2, p.38] that every abelian regular ring 
is unit-regular.

In section 2, we show that if 氏 is a unit-regular ring and R has no 
nontrivial idempotents, 나len R is a division ring. We also show that in 
case that 7? is a unit-regular ring such that G acts on X by the regular 
action and R has a finite nonzero number of nontrivial idempotents, 
if 10(x)| = 1 for all x in X or G is half-transitive on X)then R is 
finite. In particular, if a unit-regular ring R has two or four nontrivial 
idempotents which are central, then R is isomorphic to the product of 
two finite fields which are isomorphic to each other.
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2. The regular action in a unit-regular ring
The following theorem has been proved in [4].

THEOREM 2.1. If R is any ring having only n + 1 left (right) zero­
divisors, where n is positive integer, then R is necessarily finite and 
does not contain more than (n + I)2 elements.

LEMMA 2.2. Let R be a ring with unity 1 and let E be the set of 
all nontrivial idempotents in R. If E is a nonempty finite set, then |B| 
is even.

Proof. It is clear that for each e £ E, 1 — e E E. Assume that 
e = 1 — e. Then 1 = 2e. If 산iar(R) = 2)then 1 = 2e — 0, a 
contradiction. If char(R) + 2, then e is invertible, a contradiction. 
Hence for each e E Ey e 1 — e. Therefore |£J| is even.

LEMMA 23 EE JI be a, unitr-reguiar ring. Jf R has no nontrivial 
idempotents^ then R is a division ring.

Proof. For any nonzero X in R、there is a unit u in R sudi that 
xux = x. Then xu and ux are idempotents of R. By assumption, 
xu ux = 1. Therefore R is a division ring.

LEMMA 2.4. Let R be a unit-regular ring. Then for all a E R, a is 
a unit or a is a zero divisor.

Proof. Suppose a E R is not unit. Since R is unit-regular, there 
exists a unit u E R such that aua = a, so 0 = a(ua — 1) = (au — l)a. 
If ua = 1, then a = u-1, a contradiction. Hence ua — 1 0, which
means that a is right zero-divisor. Similarly, we can show that a is left 
zero-divisor.

LEMMA 2.5. Let R be a unit-regular ring such that G acts on X 
where G is the set of units in R and X is the set of nonzero, nonunits 
in R. If |0(x)| = 1 for all x E X9 then every x € X is nontrivial 
idempotent of R.

Proof. Assume that there exists a x € X, which is not nontrivial 
idempotent. Then there exists a unit u E G such that ux is a non­
trivial idempotent of R. Since |0(x)| = 1 for all x € Jf, ux = x, a 
contradiction.
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COROLLARY 2.6. Let R be a unit-regular ring such that G acts on 
X and let E be the set of Nontrivial idempotents hr R. If 0 \E\ is
finite and |0(；이 = 1 for aU x E X9 then R is a finie ring.

Proof. It follow from Theorem 2.1 and Lemma 2.5.

The fcdlowing Lemma has been proved in [1].

LEMMA 2.7. Let R be a ring with identity such that G is half- 
transitive on X by the regular action. If R is not a local ring and Af J 
(J is the Jacobson radical of R) contains a nontrivial idempotent, then 
G is a Suite group,

LEMMA 2.8. Let R be a unit-regular ring such that G acts on X 
by the regular action and let E be the set of nontrivial idempotents in 
R. If 0 \E\ is finite, then there exist xi,o；2, • • ■ , xn G X such that
X = O(xi) U 0(x2)• ■' U 0(xn). In particular, if |0(z)| = |0(y)| = s for 
sll x^y E X and forsome^positiire integer s, then |X| = s|E|.

Proof. For all x G X, there exixts ux E G such that uxx is a nontriv­
ial idempotent in R. Since \E\ is finite, say u\Xy^U2X2^ - - - ,unzn where 
ut E G and xt € X(1 <i <n = for each x € X\{zi,X2, • • • ,xn), 
uxx = uzxt for some z. So x = u~lUiXt and then x € 0(xz). Hence X = 
0(z고)U0(z2)U・ - -U0(xn) and so \X\ = |0(ti)| + |0(x2)H----- |-|0(3：n)|. In
particular, if |0(x)| = |0(y)| = s f。호 all G R、then \X\ 二二 sn = 아

THEOREM 2.9. Let R be a imit-regula호 ring such that G is half­
transitive on X and let E be the set of nontrivial idempotents in R. If 
0 + |E| is finite, then R is a finite ring.

Proof. It follows from Lemma 2.2 and Lemina 2.7 that G is finite. 
Since G is finite, if G is transitive on X, then X is finite. So by Theorem 
2.1, R is finite ring. Suppose that G is not transitive on X but G is 
half-transitive on X. By lemma 2.3, X = 0(x1) U 0(x2) U .• • U 0(xn) 
for some xt G X(1 < z < n = L끼). Since 0(xt) is finite, \X\ = 
|0(^!)| + |0(*2)| + • • • + |0(zn)|, so X is finite. Therefore, by Theorem 
2.1, -R is a finite ri교g.

LEMMA 2.10. Let R be a ring with identity. Then the idempotent 
e ^0 of R is primitive if and only if eRe contains no idempotents other 
than 0 and e.
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Proof.(今)Suppose that e 0 of J? is primitive. Let / 6 eRe be 
an idempotent. Then / = ere for some r E R- Clearly ef = f = fe 
and (e — J)2 = e — / and also (e — /)/ = ef — f2 = f — f = D and 
f(e — jF) = 0. So e = (e —and (e — f)f = /(e — /) = 0. Since e 
is primitive, e — / = 0or/ = 0. Hence eRe contains no idempotents 
other than. 0 and e.

(<=) Suppose that eRe contains no idempotents other than 0 and e. 
Assume that e =处 + % where 5切=egi = 0)e：=力 and = % 
Since e^e = ei € Ke and eei = ej € eR,

5 =世=eiei = (eei)(eie) € (eR){Re) C eRe.

Similarly,勿 G eRe. By assumption, since eRe contains no idempotent 
other than 0 and e, ei = 0 or 力 =e. Hence e is primitive.

I』區됴任A 一2111. Let R be a regular ring with identity. Then e 
prwoitive idempotent in R iff eRe is a division ring.

Proof. (二》) If e is a primitive idempotent in R、by Lemma 2.10, eRe 
contains no idempotent other than 0 and e. For z 尹 0 £ eKe, consider 
right ideal xR of R. Since R is regular, xR = (f) for some idempotent 
t € eR. By assumption, t — e and so xr = e for some r G 22. We can. 
note that (rx)(rx) = r(xr)x = rex = rx and also rx = e. Hence x is 
invertible in eBe, and so eRe is a division ring.

(<=) It is enough to show that eRe has no idempotents other than 
e and 0 by Lemma 2.10. Let / = /2 G eRe. Then f(e — /) = 0. Since 
eRe is a division ring, / = 0ore — / = 0.

LEMMA 2.12. Let R be a regular ring with identity let E be the set 
of nontrivial idempotents in R. If \E\ = 2 or 4, then every element of 
E is primitive.

Proof. If E = 2, then clearly every element of E is primitive. Sup- 
p。용e that E = 4. Let e, 1 — e, /, and 1 — f be all dictinct elements of 
E. We will show that e is primitive idempotent of R. Assume that e 
is not primitive idempotent of R, Then we have two possibilities that 
e can be written as the sum of two orghogonal nonzero idempotents 
say, e = (1 — e) 4- / or e = (1 — e) + (1 — /). Then the equality 
e = (1 — e) + / implies that e =： /, a contradiction. Also the equality 
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e = (1 — e) + (1 — /) implies that 1 — e = /, a contradiction. Similarly 
we can show that 1 — e, f, 1 — f are primitive.

Recall that a regular ring R is abelian if every idempotent is central.

THEOREM 2.13. Let R be an abelian regular ring such that G is 
half-transitive on X and let E be the set of nontrivial idempotents in 
R. If E = 2 or 4, then R is a direct sum of two finite Gelds Fi and 
where is isomorphic to 码.

Proof. By Lemma 2.12 and assumption, all element of E are prim­
itive and central. Thus R = eR © (1 — e)R for some e E E. By 
Lemma 2.9, R is finite. By Lemma 2.11, since e is primitive, eR and 
(1 — e)R are finite fields. Clearly, the function er —> (1 — e)r defined 
by er —> (1 — e)r for all er G eR、is a ring isomorphism. Hence we have

COROLLARY 2.14. Let R be a unit~regular ring such that G is tran­
sitive on X and let E be the set of nontrivial idempotents in R. If 
0 寸二 |E| is Unite, then R m Mi(Fi) © M2(F2) ® ® Mk(FQ with
|Fi|ni........L&r나 < I이 + 1 where is the ring of all nt x nt
matrices over a finite Geld Ft for z = 1,2, ••- yk and k is some positive 
integer.

Proof. By Theorem 2.9, R is finite. Since G is transitive on X： 
\X\ < \G\, Since R is finite and semisimple, by the Wedderbum - 
Artin Theorem, we have that R m Mi(Fi) © 泌(形)® * ® Mk(Fk) 
where is the ring of all nt x n： matrices over a finite field Ft
for z — 1,2, ••- , A; and k is some positive integer. Hence it follows from 
Theorem 2.1 that |Fl|ni....... \Fk\nk < |G| + 1.

COROLLARY 2.15. Let R be a abelian regular ring such that G is 
transitive on X and let E be the set of nontrivial idempotents in R. If 
0 丰 \E\ is finite, then R 牝 瓦£斑 &・ . •© JY with 卩히 < (|이+ 1)자 where 
Ft is a finite Held for z = 1,2, ••- , k and k is some positive integer.

Proof. Since abelian regualr ring R is unit-regualr and every idem­
potents in R is central, it must be nt = 1 in the proof of Corollary 2.14 
for each z = 1,2, •■- , k. Hence we have the result.
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COROLLARY 2.16. Let R be a unit-regular ring such that G is not 
transitive but is half-transitive on X and let E be the set of nontrivial 
idempotents in R. If 0 |剧 is finite, then R « Mi(Ff) ® 九頌呂)®
• • • ©with |Ji|ni |1기5 < ($|E| + 1) where |0(x)| = s for 
all x E X and is the ring of all n, x nt matrices over a finite 
field Ft for z = 1,2, ••- , k and k is some positive integer.

Proof. By Theorem 2.9, R is also finite. Since G is not transitive 
on X but is halttransitive on X, by Theorem 2.8, \X\ = s\E\ where 
|0(s)| = s for all g £ X, Since R is finite and semisimple, as proof in 
the Corollary 2.14, R % Mi(Ji)® Af2(F2)©- • Mfc(Ffc) where M{(Ft)
is the ring of all nt x nt matrices over a finite field F{ for i = 1,2, • • • , 
and k is some positive integer. Hence it follows from Theorem 2.1 that 
回阮 ••… Il기미: <(3|E| + 1).

COROLLARY 2.17. Let R be an abelian regular ring such that G is 
not transitive on X but half-transitive on X and let E be^the^set^of 
nontrivial idempotents in R. IfO^ |-E| is finite, then R b 码 & 码 由
• • *®Fk with |J?| < (s'끼+ 1)2 where Ft is a finite field fort == 1,2, • • • , fc 
and k is some positive integer and s = |0(z)| for all x E X.

Proof. Similar to the proof of Corollary 2.15.
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