REGULAR ACTION IN A UNIT-REGULAR RING

Juncheol Han

1. Introduction and Basic Definitions

Let R be a ring with identity and let G denote the group of units of R and X denote the set of nonzero, nonunits of R. We call the action, ($g, r) \rightarrow g r$ from $G \times R$ to R, the regular action. Clearly, X is invariant under the action.

If $f: G \times X \rightarrow X$ is a group action on X, for each x in X, we define the orbit $0(x)$ by, $0(x)=\{f(g, x) \mid g \in G\}$. G is said to be transive on X if there is an x in X with $0(x)=X$ and G is said to be half-transive on X if G is transive on X or $0(x)$ is finite and $|0(x)|=|\theta(y)|>1$ for all x and y in X.

It is easyly shown that if a ring R with identity has finite nonzero number of nontrivial idempotents of R, then the number is even. An idempotent e in a ring R is called primitive if it cannot be written as the sum of two orthogonal nonzero idempotents, and is called central if it is contained in the center of R.

A ring R is called regular (resp. unit-regular) if for each x in R, there is an elememt u in R (resp. unit u in G) such that $x u x=x$. A regular ring R is abelian if all idempotents in R are central. It was already shown in [2,Corollary $4.2, \mathrm{p} .38$] that every abelian regular ring is unit-regular.

In section 2, we show that if R is a unit-regular ring and R has no nontrivial idempotents, then R is a division ring. We also show that in case that R is a unit-regular ring such that G acts on X by the regular action and R has a finite nonzero number of nontrivial idempotents, if $|0(x)|=1$ for all x in X or G is half-transitive on X, then R is finite. In particular, if a unit-regular ring R has two or four nontrivial idempotents which are central, then R is isomorphic to the product of two finite fields which are isomorphic to each other.

2. The regular action in a unit-regular ring

The following theorem has been proved in [4].
THEOREM 2.1. If R is any ring having only $n+1$ left (right) zerodivisors, where n is positive integer, then R is necessarily finite and does not contain more than $(n+1)^{2}$ elements.

LEMMA 2.2. Let R be a ring with unity 1 and let E be the set of all nontrivial idempotents in R. If E is a nonempty finite set, then $|E|$ is even.

Proof. It is clear that for each $e \in E, 1-e \in E$. Assume that $e=1-e$. Then $1=2 e$. If $\operatorname{char}(R)=2$, then $1=2 e=0$, a contradiction. If $\operatorname{char}(R) \neq 2$, then e is invertible, a contradiction. Hence for each $e \in E, e \neq 1-e$. Therefore $|E|$ is even.

LEMMA 2.3. Let R be a unit-regular ring. If R has no nontrivial idempotents, then R is a division ring.

Proof. For any nonzero X in R, there is a unit u in R such that $x u x=x$. Then $x u$ and $u x$ are idempotents of R. By assumption, $x u=u x=1$. Therefore R is a division ring.

Lemma 2.4. Let R be a unit-regular ring. Then for all $a \in R$, a is a unit or a is a zero divisor.

Proof. Suppose $a \in R$ is not unit. Since R is unit-regular, there exists a unit $u \in R$ such that $a u a=a$, so $0=a(u a-1)=(a u-1) a$. If $u a=1$, then $a=u^{-1}$, a contradiction. Hence $u a-1 \neq 0$, which means that a is right zero-divisor. Similarly, we can show that a is left zero-divisor.

LEMMA 2.5. Let R be a unit-regular ring such that G acts on X where G is the set of units in R and X is the set of nonzero, nonunits in R. If $|0(x)|=1$ for all $x \in X$, then every $x \in X$ is nontrivial idempotent of R.

Proof. Assume that there exists a $x \in X$, which is not nontrivial idempotent. Then there exists a unit $u \in G$ such that $u x$ is a nontrivial idempotent of R. Since $|0(x)|=1$ for all $x \in X, u x=x$, a contradiction.

Corollary 2.6. Let R be a unit-regular ring such that G acts on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite and $|0(x)|=1$ for all $x \in X$, then R is a finie ring.

Proof. It follow from Theorem 2.1 and Lemma 2.5.
The following Lemma has been proved in [1].
Lemma 2.7. Let R be a ring with identity such that G is halftransitive on X by the regular action. If R is not a local ring and A / J (J is the Jacobson radical of R) contains a nontrivial idempotent, then G is a finite group.

Lemma 2.8. Let R be a unit-regular ring such that G acts on X by the regular action and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then there exist $x_{1}, x_{2}, \cdots, x_{n} \in X$ such that $X=0\left(x_{1}\right) \cup 0\left(x_{2}\right) \cdots \cup 0\left(x_{n}\right)$. In particular, if $|0(x)|=|0(y)|=s$ for all $x, y \in X$ and for some positive integer s, then $\{X|=s| E \mid$.

Proof. For all $x \in X$, there exixts $u_{x} \in G$ such that $u_{x} x$ is a nontrivial idempotent in R. Since $|E|$ is finite, say $u_{1} x_{1}, u_{2} x_{2}, \cdots, u_{n} x_{n}$ where $u_{1} \in G$ and $x_{1} \in X(1 \leq i \leq n=|E|)$, for each $x \in X \backslash\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, $u_{x} x=u_{1} x_{1}$ for some 2 . So $x=u_{x}^{-1} u_{i} x_{2}$ and then $x \in 0\left(x_{2}\right)$. Hence $X=$ $0\left(x_{1}\right) \cup 0(x 2) \cup \cdots \cup 0\left(x_{n}\right)$ and so $|X|=\left|0\left(x_{1}\right)\right|+\left|0\left(x_{2}\right)\right|+\cdots+|0(x n)|$. In particular, if $|O(x)|=|0(y)|=s$ for all $x, y \in R$, then $|X|=s n=s|E|$.

Theorem 2.9. Let R be a unit-regular ring such that G is halftransitive on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then R is a finite ring.

Proof. It follows from Lemma 2.2 and Lemma 2.7 that G is finite. Since G is finite, if G is transitive on X, then X is finite. So by Theorem $2.1, R$ is finite ring. Suppose that G is not transitive on X but G is half-transitive on X. By lemma 2.3, $X=0(x 1) \cup 0(x 2) \cup \cdots \cup 0(x n)$ for some $x_{1} \in X(1 \leq \imath \leq n=|E|)$. Since $0\left(x_{2}\right)$ is finite, $|X|=$ $\left|0\left(x_{1}\right)\right|+\left|0\left(x_{2}\right)\right|+\cdots+\left|0\left(x_{n}\right)\right|$, so X is finite. Therefore, by Theorem 2.1, R is a finite ring.

Lemma 2.10. Let R be a ring with identity. Then the idempotent $e \neq 0$ of R is primitive if and only if $e R e$ contains no idempotents other than 0 and e.

Proof. (\Rightarrow) Suppose that $e \neq 0$ of R is primitive. Let $f \in e R e$ be an idempotent. Then $f=$ ere for some $r \in R$. Clearly $e f=f=f e$ and $(e-f)^{2}=e-f$ and also $(e-f) f=e f-f 2=f-f=0$ and $f(e-f)=0$. So $e=(e-f)+f$, and $(e-f) f=f(e-f)=0$. Since e is primitive, $e-f=0$ or $f=0$. Hence $e R e$ contains no idempotents other than 0 and e.
(\Leftrightarrow) Suppose that $e R e$ contains no idempotents other than 0 and e. Assume that $e=e_{1}+e_{2}$ where $e_{1} e_{2}=e_{2} e_{1}=0, e_{1}^{2}=e_{1}$ and $e_{2}^{2}=e_{2}$. Since $e_{1} e=e_{1} \in R e$ and $e e_{1}=e_{1} \in e R$,

$$
e_{1}=e_{1}^{2}=e_{1} e_{1}=\left(e e_{1}\right)\left(e_{1} e\right) \in(e R)(R e) \subset e R e
$$

Similarly, $e_{2} \in e R e$. By assumption, since $e R e$ contains no idempotent other than 0 and $e, e_{1}=0$ or $e_{1}=e$. Hence e is primitive.

Lemma 2.11. Let R be a regular ring with identity. Then e is a primitive idempotent in R iff $e R e$ is a division ring.

Proof. (\Rightarrow) If e is a primitive idempotent in R, by Lemma 2.10, $e R e$ contains no idempotent other than 0 and e. For $x \neq 0 \in e R e$, consider right ideal $x R$ of R. Since R is regular, $x R=(t)$ for some idempotent $t \in e R$. By assumption, $t=e$ and so $x r=e$ for some $r \in R$. We can note that $(r x)(r x)=r(x r) x=r e x=r x$ and also $r x=e$. Hence x is invertible in $e R e$, and so $e R e$ is a division ring.
(\Leftarrow) It is enough to show that $e R e$ has no idempotents other than e and 0 by Lemma 2.10. Let $f=f^{2} \in e R e$. Then $f(e-f)=0$. Since $e R e$ is a division ring, $f=0$ or $e-f=0$.

Lemma 2.12. Let R be a regular ring with identity let E be the set of nontrivial idempotents in R. If $|E|=2$ or 4 , then every element of E is primitive.

Proof. If $E=2$, then clearly every element of E is primitive. Suppose that $E=4$. Let $e, 1-e, f$, and $1-f$ be all dictinct elements of E. We will show that e is primitive idempotent of R. Assume that e is not primitive idempotent of R. Then we have two possibilities that e can be written as the sum of two orghogonal nonzero idempotents say, $e=(1-e)+f$ or $e=(1-e)+(1-f)$. Then the equality $e=(1-e)+f$ implies that $e=f$, a contradiction. Also the equality
$e=(1-e)+(1-f)$ implies that $1-e=f$, a contradiction. Similarly we can show that $1-e, f, 1-f$ are primitive.

Recall that a regular ring R is abelian if every idempotent is central.
THEOREM 2.13. Let R be an abelian regular ring such that G is half-transitive on X and let E be the set of nontrivial idempotents in R. If $E=2$ or 4 , then R is a direct sum of two finite fields F_{1} and F_{2} where F_{1} is isomorphic to F_{2}.

Proof. By Lemma 2.12 and assumption, all element of E are primitive and central. Thus $R=e R \oplus(1-e) R$ for some $e \in E$. By Lemma 2.9, R is finite. By Lemma 2.11, since e is primitive, $e R$ and $(1-e) R$ are finite fields. Clearly, the function $e r \rightarrow(1-e) r$ defined by $e r \rightarrow(1-e) r$ for all $e r \in e R$, is a ring isomorphism. Hence we have the result.

Corollary 2.14. Let R be a unit-regular ring such that G is transitive on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then $R \approx M_{1}\left(F_{1}\right) \oplus M_{2}\left(F_{2}\right) \oplus \cdots \oplus M_{k}\left(F_{k}\right)$ with $\left|F_{1}\right|^{n_{1}} \cdots \cdot\left|F_{k}\right|^{n_{k}} \leq|G|+1$ where $M_{z}\left(F_{t}\right)$ is the ring of all $n_{i} \times n_{1}$ matrices over a finite field F_{2} for $i=1,2, \cdots, k$ and k is some positive integer.

Proof. By Theorem $2.9, R$ is finite. Since G is transitive on X, $|X| \leq|G|$. Since R is finite and semisimple, by the Wedderburn Artin Theorem, we have that $R \approx M_{1}\left(F_{1}\right) \oplus M_{2}\left(F_{2}\right) \oplus \cdots \oplus M_{k}\left(F_{k}\right)$ where $M_{i}\left(F_{i}\right)$ is the ring of all $n_{i} \times n_{i}$ matrices over a finite field F_{i} for $i=1,2, \cdots, k$ and k is some positive integer. Hence it follows from Theorem 2.1 that $|F 1|^{n_{1}} \cdots \cdot\left|F_{k}\right|^{n_{k}} \leq|G|+1$.

Corollary 2.15. Let R be a abelian regular ring such that G is transitive on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then $R \approx F_{1} \oplus F_{2} \oplus \cdots \oplus F_{k}$ with $|R| \leq(|G|+1)^{2}$ where F_{1} is a finite field for $t=1,2, \cdots, k$ and k is some positive integer.

Proof. Since abelian regualr ring R is unit-regualr and every idempotents in R is central, it must be $n_{i}=1$ in the proof of Corollary 2.14 for each $i=1,2, \cdots, k$. Hence we have the result.

Corollary 2.16. Let R be a unit-regular ring such that G is not transitive but is half-transitive on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then $R \approx M_{1}\left(F_{1}\right) \oplus M_{2}\left(F_{2}\right) \oplus$ $\cdots \oplus M_{k}\left(F_{k}\right)$ with $\left|F_{1}\right|^{n_{1}} \cdots \cdots\left|F_{k}\right|^{n_{k}} \leq(s|E|+1)$ where $|0(x)|=s$ for all $x \in X$ and $M_{i}\left(F_{i}\right)$ is the ring of all $n_{i} \times n_{i}$ matrices over a finite field F_{z} for $i=1,2, \cdots, k$ and k is some positive integer.

Proof. By Theorem 2.9, R is also finite. Since G is not transitive on X but is half-transitive on X, by Theorem $2.8,|X|=s|E|$ where $|0(x)|=s$ for all $x \in X$. Since R is finite and semisimple, as proof in the Corollary 2.14, $R \approx M_{1}\left(F_{1}\right) \oplus M_{2}\left(F_{2}\right) \oplus \cdots \oplus M_{k}\left(F_{k}\right)$ where $M_{i}\left(F_{i}\right)$ is the ring of all $n_{i} \times n_{i}$ matrices over a finite field F_{i} for $i=1,2, \cdots, k$ and k is some positive integer. Hence it follows from Theorem 2.1 that $\left|F_{1}\right| n_{1} \cdots \cdots\left|F_{k}\right|^{n_{k}} \leq(s|E|+1)$.

Corollary 2.17. Let R be an abelian regular ring such that G is not transitive on X but half-transitive on X and let E be the set of nontrivial idempotents in R. If $0 \neq|E|$ is finite, then $R \approx F_{1} \oplus F_{2} \oplus$ $\cdots \oplus F_{k}$ with $|R| \leq(s|E|+1)^{2}$ where F_{\imath} is a finite field for $\imath=1,2, \cdots, k$ and k is some positive integer and $s=|0(x)|$ for all $x \in X$.

Proof. Similar to the proof of Corollary 2.15.

References

1. J. A. Cohen and K. Koh, Half-transstive group action in a compact ring, J. Pure Appl. Algebra 60 (1989), 139-153.
2. K. R. Goodeal, Von Neumann Regular Rings, Pıtman Publ Ltd., 1979.
3. J. Lambek, Lectures on rings and Modules, Blasdell Publ. Co., 1966
4. K. Koh, On properties of ring with a finte number of zero dinsors, Math. Ann. 171 (1967), 79-80.

Department of Mathematics
Koshin College
Pusan 606-080, Korea

