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GENERAL CONCEPTS OF 
REGULARITY OF NEAR RINGS

Yong Uk Cho

l.Introduction
The concepts of regularity of near-rings have been studied by J. C. 

Beidleman [2] and S. Ligh [6]. In 1980 G. Mason [7] introduced the 
notions of strong regularity of near-rings, and he proved that for any 
zero-symmetric near-ring with identity, 난ic concepts of left regular
ity, strong left regularity and strong right regularity of near-rings are 
equivalent.

In M985 M. Ohori [8], and in 1991 Y. Hirano [4] investigated the 
characterization of strong 7r-regularity of ring, and of 7r-regularity of 
rings.

In this paper, we will introduce more general concepts 冗-regularity 
of near-rings that is /C-regularity and semi 7r-regularity and we shall 
characterize relationships between them. We see that eve호y left and 
right 7r-regularity of near-ring is 7r-regularity. We can prove that, us
ing some Lemmas, for zero-symmetric near-ring with left identity, the 
notions of regularity, ^-regularity, left /C-regularity and left semi ?r- 
regularity of near-rings are equivalent.

C. Faith [이 studied chain conditions on principal annihilator left 
ideals and on principal left ideals of ring with identity, we will study 
chain conditions on principal annihilator left ideals and on principal 
2V-subgroups of near-rings.

We will generalize the concepts of bipotent near-rings which are 
called the generalized left bipotent near-ring and the generalized right 
bipotent near-ring and we will investigate relationships between left K,- 
regularity and DCCN for principal 7V-subgroups and generalized left 
bipotent near-rings, between right AC-regularity and ACCL for principal 
annihilator left ideals and generalized right bipotent near-rings.
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2. Preliminaries
A near-ring TV is an algebraic system (TV, +) such that (TV, +,・)is a 

group ( not necessarily abelian ) and (N、■) is a semigroup with right 
distributive laws hold for any three elements in N. In general, for any 
element a in AT, aO == 0 is not true, and Nq = {a E N : aO = 0} 
is a subnear-ring of JV, if jV = TVo then N is called a zero-symmetric 
near-ring and other basic definitions in near-rings and 7V-groups see 
the text book of Gunter Pilz [9] as ” Near-Ring

A near-ring N is called 7r-regular if for any element a in N there 
exists a positive integer n such that an is a regular element, and left 
7r-regular if for any element a in N there exists a positive integer n 
such that an is a left regnlar element, and right『regular if for any 
element a in TV there exists a positive integer n such that an is a right 
regular element.

A near-ring N is called left S-unital if for any element a in N、a is 
contained in Na. Similarly for right S-unital near-ring.

For any a in N、Na is called a principal (left) 7V-subgroups of N. 
We see that Na D Nd，D Na3 D • • • descending chain of principal 
JV-subgroups of TV, denoted that L(a) is a (left) aimifilator of a in 2V, 
we called that L(0) is a principal annihilator left ideal of N、clearly 
we obtain that L(a) C L(a2) C L(a3) - - • ascending chain of principal 
annihilator left ideals of N.

LEMMA 2.1. Let N be a left (or right) regular near-ring. If for any 
a^b in N such that ab = 0 then (ba)n = bO, for all positive integer n.

Lemma 2.2. Let N be a left (or right) regular near-ring. If for each 
ayb in N with ab = 0 and an = aO, for all positive integer n which are 
greater than or equal to 2, then a = 0. Ih this case, if N = Nq then N 
is reduced.

LEMMA 2.3. ( G. Mason [7] ). Let N be a zero-symmetiiCy re
duced near-ring. If for any ayb in N such that ab = 0, then ba = 0.

Proof. Clearly, from Lemma 2.1.

LEMMA 2.4. Let N be a zero-symmetric near-ring with left identity. 
If N is reduced, then every idempotent is central.

Proof. Let e be an idempotent element in N and let x in N. Then 
(ex — exe)e = 0. By Lemma 2.3, e(ex — exe) = 0. On the other hand, 



General concepts of regularity of near rings 149

since (ex — exe)ex = 0, ex(ex —exe) —exe(ex — exe) = 0, by hypothesis, 
ex = exe.

Next, if N has a left identity 1, then, since (1 — e)e = 0 by Lemma 
2.3, e(l — e) = 0 and since (xe — exe)e = xe — exe, (1 — e)xe = xe — exe, 
we obtain that

(xe — exe)2 = (xe — exe)e(l — e)xe = 0.
Then, since N is reduced, xe = exe. Hence ex = xe. Consequently e 
is central.

3. More general concepts of regularity and their relation
ships

A near-ring N is said to be left semi 7r-regular if for any element 
a in N there exists a표 element x in N such that an = axan for some 
positive integer n, and right semi ?r-regiilar if for any element a in N 
there exists an element x in N such that an = axan for some positive 
integer n.

N is called left K^-regular if for every element a in N、there exists an 
element x in N such that an = xan+i for some positive integer n, and 
right AS-regular if for every element a in N, there exists an element x 
in N such that an = an+1x for some positive integer n.

In general, every ?r-regular near-ring is left semi 7r-regular and right 
semi 7T-regular, every left 7r-regular near-ring is left /C-regnlar and every 
ieft /C-regular near-ring is left semi 7r-regular but not conversely.

Simillarly for right 7r-regular, right /C-regnlar and right semi 7r- 
regular.

There exist many examples of semi 7r-regularity and /C-regularity of 
near-rings5 we can. easily show for finite near-rings. See near-rings of 
low order in appendix of [9].

Proposition 3.1.
(1) Let N be a left S-unital near-ring. Then N is left regular if 

and only if N is left bipotent,
(2) Let N be a right S-unital near-ring. Then N is right regular 

if and only if N is right bipotenf.

Proof. These are easy, so left to the readers. See, Remark 4.7. in 
this paper, section 4.
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PROPOSITION 3.2. If a near-ring N is left semi ?r-regular and left 
regular, then N is regular.

Proof. Since N is left semi 7r-regular, for each a in N\ there exist 
an element x in N such that an = axan, for some positive integer n. 
Since (an-1 — axan~l)a = 0 by Lemma 2.1, a(an-1 — axan-1) = aO.

Now, we see that

(an~x ——axa71"1)2 = an~1(an~1 — axart-1) — azan-1(an-1 — axan-1) 

=(an-1 — axan-1)0.

By Lemma 2.2, an~x = axa^1. After n — 2 steps from this equality, 
we ootain that, a = axa. Hence N is regular.

PROPOSITION 3.3. Let N is zero-symmetric with left identity and 
reduced. The following statements are equivalent :

N is 7T-regular.
N is left /C-regular.
N is left semi tt-regular.
N is regular.

Proof, (1) => (2). Suppose N is ?r-regular. Then for any element a 
in N there exists an element x in N such that an = anxan, for some 
positive integer n. Since xan is an idempotent, from Lemma 2.4, it is 
central. Thus we have

an = anxan = xanan = xan~lan+1 = yan+1,

where y is denoted by xan-1. Hence N is left /C-regular.
(2) => (3). It follows from the beginning part in this section.
(3) => (4). Assume that N is left semi 7r-regular. Then for each a in 

N、there exists an element x in TV such that an = axan for some positive 
integer n. Since (an-1 — axan~1)a = 0, by Lemma 2.3, a(an-1 一 

axan-1) = 0. Now we see that

(an—코—= an-1(an-1—axan-1)—axan-i(an-1—axan"~1) = 0.

Since N is reduced, an-1 = axan-1. Continuing this procedure to n —2 
steps, we obtain that a = axa that is N is regular.

(4) => (1). Obvious.
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PROPOSITION 3.4. If a near-ring N is left N and ?r-regular then N 
is right /C-regular.

Proof. Using Lemma 2.1 and Lemma 2.2.

COROLLARY 3.5. Let N is zero-symmetric with left identity and 
left regular. The following statements are equivalent :

(1) N is regular.
(2) N is 7T-regular.
(3) N is left /C-reguIar.
(4) N is left semi %-regular.

PROPOSITION 3.6. If N is a semi 7r-regular near-ring with the prop
erty that for each non-zero element a in N, there is a unique element x 
in N and some positive integer n such that an = axan (or an = anxa 
then N is integral, in particular N is reduced. Furthermore, every non 
zero idempotent is a right identity.

Proof. We will prove the first statement and the remainder part is 
easily proved.

Let a be any non zero element in N. If ba = Q for all & in TV. Then 
there is a positive integer n and a unique z in TV such that an = axan 
and we see that a(x + b)an = axan. By uniqueness property, we obtain 
that x + b = x. Consequently, b = 0. Therefore N is integral.

COROLLARY 3.7. If N is a regular near-ring with the property : for 
any non zero element a in Nf there exists a unique x in N such that 
a = axay then N is integral, in particular N is reduced. Moreover, 
every non zero idempotent is a right identity.

These statements in corollary 3.7. are very important in ring theory 
and semigroup theory (: inverse semigroup ).

4. Generalized bipot ent near-rings and their application
A near-ring N is said to be generalized left bipotent (: GLB ), if 

for any element a in TV, there exists a positive integer n, such that 
Nan = 7Van+1.

Similarly, we can also define generalized right bipotent (: GRB ).
A near-ring N satisfies DCC. on principal left 7V-subgroups of N、 

if for each element a in N there is a positive integer n such that 
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Nan = Nan+1 = Nan^2 = •・•・ A near-ring N has ACC. o효 prin
cipal annihilator left ideals of N if for every element a in TV there is a 
positive integer n such L(an) = L(an+1) = L(an+2)=…. Obviously, 
every left bipotent 교ear-ring is GLB and every right bipotent near-ring 
is also GRB.

PROPOSITION 4.1. Let N be a GLB near-ring. If there exists an 
element in N which is not a (right) zero divisor. Then N is monogenic 
and left bipot ent.

Proof. Let a in N which is not a zero divisor. Then an is also not 
a zero divisor for any positive integer n. Indeed, if an is a zero divisor 
for some positive integer n. Then there exists non-zero element x in N 
such that xan = 0.

Now, xan~ra = 0 implies that xan~r = 0 because a is not a zero
dis癌电r. Continuing this pmeras, we军出風免二which 1s-j常冀듷*Emm *. 宣-蔓畫岫康曲~

Next, since N is GLB, there exists a positive integer m, such that 
Nam = Nam+1. Let x be any element of N. Then there is an element 
y in N such that xam = yam+1. This implies that (x — ya)am = 0. 
Since am is not a zero divisor, x = ya, we see that Na = N・ Thus N 
is monogenic. Clearly, N is left bipotent.

COROLLARY 4.2. Let N be a near-ring with DCC. on principal left 
N-subgroups of TV. If there exists an element in N that is not a (right) 
zero divisor. Then N is monogenic and left bipotent.

REMARK 4.3. In proposition 4.1, Corollary 4.2, if 2V = and 
"left” is replaced by "right” and ” right ” is replaced by "left”： then N 
is also monogenic (:right, in the sense) and right bipotent.

THEOREM 4.4. Let N be any left S-unital near-ring. Then the 
following statements are equivalent :

(1) N is left /C-regular.
(2) N has the DCC. on principal left N-subgroups of N.
(3) N has the almost DCC. on principal left N-subgroups of N.
(4) N is GLB.

Proof. (1) => (2). Assume N is left AS-regular. Let a be any element 
in N. Since N is left S-unital, Na is a principal left 7V-subgroup of N 
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generated by a. Consider

Na D Nq? D Na3 二)…

be descending chain ofthe principal left 7V-subgroups of N. Since N 
is left /C-regtdar, there exists an element x in N and exists a positive 
integer n, such that an = xan+1. Now

Nan = Nxan+1 C Nan+1 = Naan C Nan.

Thus we obtain that Nan = ]Va저" . Similarly, we have that

Nan^1 = Nan^2 = Nan^3 = ••・

Hence N satisfies the DCC. on principal left 2V-subgroups.
(2) => (3). For almost DCC. or almost ACC. concepts, see the 

paper [11]. Almost DCC.(Almost ACC, resp.) concept is more general 
commit ofJDCC.(ACC. resp.) ForS-uni±al그ear-rin흥 (or rin흥)' ” 

DCC.(almost ACC. resp.) on 7V-subgroups (or ideals) ” is equivalent 
to ” DCC.(ACC. resp.) on 7V-subgroups (or ideals)

(3) => (4). From the fact that " GLB ” is a general concept of ” 
DCC. on principal left 7V-subgroups of IV

(4) => (1). Suppose N is GLB. Let a be any element of N・ Then 
there exists a positive integer n such that Nan = 7Van+1. Since N 
is left S-unital, an is an element of Nan so an is also an element of 
IVq저". Then there exists x in N such that an = xan+1. Hence N is 
left /C-regular.

COROLLARY 4.5. let N be 이iy near-ring with left identity. Then 
the following statements are equivalent :

(1) N is left JC-regular.
(2) N has the DCC. on principal left N-subgroups of N.
(3) N has the almost DCC. on principal left N-subgroups of TV.
(4) N is GLB.

THEOREM 4.6. Let N be any right S-unital near-ring. Then the 
following statements are equivalent :

N is right JC-regular.
N has the DCC. on principal right N-subgroups of N.
N has the almost DCC. on principal right N -subgroups of N. 
N is GRB.
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Proof. Similarly, for the proof of proposition 4.4.

REMARK 4.7. Proposition 3.1 (1) and (2) are special cases of The
orem 4.4 and Theorem 4.6.

LEMMA 4.8. Let N be any near-ring. H N is right IC-regular then 
N satisfies the ACC. on principal annihilator left ideals of N.

Proof. Straightfbrwaxds.

THEOREM 4.9. Let N be a zero symmetric left )C-regular near-ring 
with left identity. Then the following conditions are equivalent :

(1) N is right /C-regular.
(2) N has the ACC. on principal annihilator left ideals of N.
(3) N has the almost ACC. on principal annihilator left ideals of 

N.

Proof. ⑴ (2). From L^mna4.8.
(2) => (3). Using zero symmetric, it is straightforward.
(3) :n (1). For any a in N、consider L(am) = L(am+1)= … for 

some positive integer m, since N is left /C-regular, there is an element 
xmN and some positive integer t such that a1 = without loss of 
generality, we select n := m — t. So we have L(an) = £(an+1) = • • r 
and an = xan+1 for some positive integer n. Then for all positive 
integer fc, xkan = 钟버

But, an+1 = aan = axan+1 implies (1—ax)an+1 = 0, that is (1—ax) 
is an element of £(an+1) = L(an). Hence an = axan.

Since

a 저" = aan = aaxan = a2x(xan+1) = a2x2an+1,

(1 — a2x2)an+1 = 0 implies (1 — a2x2) is an element of L(an). Thus we 
have (1 — a2x2)an = 0, that is an = a2x2a2. Continuing this process 
( n + 1 ) steps, we obtain, the equation an = a저%；저"a”. Putting

as g in N then an = an+ly. Consequently N is a right fC- 
regtdar near-ring.
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