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COMPOSITION WITH A
HOMOGENEOUS POLYNOMIAL

JUN Soo Cuoa't aND Boo Rim CHoEk?

1. Introduction

Write B for the unit ball of C” for a fixed integer n > 2 and let D
denote the unit disc of C. The Bloch space B is the space of functions
f holomorphic on D such that

1115 = sup(1 — [A®)|f' (V)] < oo
AeD

For f € H?, the Hardy space on B, we say that f € BMQOA if its
radial limit function f* is a function of bounded mean oscillations with
respect to Lebesgue measure and nonisotropic balls that correspond to
the Korényi approach regions. For details see [6].

In [1] Ahern proved that the monomial ¢(z) = n™/?z ...z, which
maps B onto D has the folllowing composition property:

fop e BMOA for every f€B.

Russo [8] applied the method of Ahern to obtain the same composition
property for the homogeneous polynomial ¢ : B — D defined by
¢(z) = 2§ + -+ z2. Ahern and Rudin [2] then noticed the fact that if
¢ is as above or a holomorphic monomial, then p satisfies a sequence
of equalities involving Cauchy integrals and utilized it in their new
proof of the same composition property for such ¢. Choe [4] used
the method of Ahern-Rudin to prove the same composition property
for functions belonging to a certain class of holomorphic homogeneous
polynomials containing all the previous examples. In [4] it is pointed
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out that the methods of Ahern and Ahern-Rudin do not work for the
following simple class of homogeneous polynomials :

(1) cp(z):alz{‘+...+anz: (d=3, 4, ---).

where |a;| < 1forj =1,--- ,n. In the present paper we use an entirely
different method and prove that all the functions in (1) have the same
composition property:

MAIN THEOREM. Let ¢ be as in (1). Then fop € BMOA for
every f € B.

The proof of the main theorem yields another similar class of func-
tions with the same composition property. See Remark at the end of
the paper.

2. Proof of Main Theorem

We first introduce some notations. Let S = OB. The Lebesgue
measure on S is denoted by 0. We let V denote the volume mea-
sure on B. For a holomorphie function f on B, we shall let Vf =
(0f/0z1,--- ,0f/0zy) denote the complex gradient of f and let Rf =
> j=12;(8f/9z;) denote the radial derivative of f. The notation <, >
means the complex inner product on C*. For z € C", we let |z]| =
<zz >1/2,

A positive Borel measure y on B is called a Carleson measure if
#(Qs(C)) = O(6")
where
Qs(()={z€B:|l-<z(>|<é (§>0,(€S)
and the constant involved in the big “O” is independent of § and (. The

following characterization of the space BMOA in terms of Carleson
measures will play a key role in the proof of the main theorem.
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THEOREM 1. Suppose f is a function holomorphic on B. Then
f € BMOA if and only if (|[Vf[* — |Rf|?) dV is a Carleson measure.

Proof. See [3].

Note. In [3] the above theorem is proved under the hypothesis f €
H?. This hypothesis, however, can be easily removed as above, because
the argument in [3] shows that a holomorphic function f on B is a
member of H? if and only if (|Vf|? — |Rf|?) dV is a finite measure.

In the rest of the paper ¢ is fixed and denotes a function as in
(1). Note that the main theorem is trivial if the sup-norm of ¢ is
strictly less than 1. Therefore, by a unitary change of variables, we

may assume without loss of generality that a; = -+ = a,, = 1 and
la;] <1, j=m+1,--- ,nfor some 1 < m < r; thus
(2) p(z) =2f +- 4 20 + Gmpr2f g+ + anzl.

The letter C will denote various constants, depending only on ¢ or
n, which may change with each occurrence.

LEMMA 2. There is a positive, radial, integrable, Borel function o
on D such that

a(r)=C(1 —r)"_2[1+o(1)] (r /1)

with the following property: if h is a positive Borel function on D, then

/hogodo:/hadA
Y D

where A denotes the area measure on D.
Proof. See [5, Theorem 3.1].

PROPOSITION 3. There is a positive, radial, integrable, Borel func-
tion 3 on D such that

Br)=Cl-m)""1+01)] (r /1)
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with the following property: if h is a positive Borel function on D, then

/hde:/ hB dA.
B D

Proof. Let a be the function introduced in Lemma 2 and fix a posi-
tive Borel function h on D. Integrating in polar coordinates and using
Lemma, 2, we obtain

1
/ hop dV = C'/ / h(z%p) do ¥ 'dz
B 0 S
1 1 2r .
=C / / / h(z%ye'®) d6 ya(y) dy z*"* dz.
0 0 0

Make successive changes of variables in the above integral: first r = z¢

and then t = ry (r fixed). The result is

1 r 2w
C / / / h(te'®)dd ta(t/r) dt r@/4=3 gr.
0 0 0

Accordingly, letting

1
BN =C [ a(r/r) r@VD=3 gp (A € D),
[Al

/hogodV:/h,BdA‘
B D

Clearly B is a positive, radial, integrable, Borel function on D. Note
that

we obtain

a(t/r) = C(r — )" 2[1 + o(1)) (t /1)

uniformly in r > ¢ and hence
1
Bt)=C[1+ 0(1)]/ (r—t)*"2 dr
= C(1 =" [1 + o(1)
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as desired. The proof is complete.

Let K denote the set of points { € S for which |p(¢)| = 1 and define

plz) = ﬂlg{,ll— <zn>| (z€B).

It is easily seen from (2) that K = UJL, K; where K is the set of points
¢ € S such that |(j| =1 and (x =0 for k # j. It follows that

p(z) = \Jin (1 = |z;l)-
For § > 0 and 8 real, let

Es(e’®)={AeD:|1— A7 < 6).

LEMMA 4. Let 0 < 6 < 1/32. Then we have the following.

(1) If¢ € S and p(¢) < 46, then o(Qs(¢)) C Ecs(e'?) for some e'?.
(it) If ¢ € S and 46 < p(() < 1/8, then 1 — |¢| > C§ on Qs().

Proof. Fix 0 <6 <1/32,( € S, z € Q5((), and let n € K be a point
such that p({) = |[1— < (,n > |. First suppose p(¢) < 48. Then the
triangle inequality (see [7, Proposition 5.1.2.])

(3)

- <a,e> "2 <[1—<ab> [+ 1= <bc>|"? (a, b, c€ B)

implies |1— < z,7 > | < 96. For simplicity assume 5 = (e*®, 0,---,0)
for some €. We then have

lo(n) = p(2)] < e — zf| +1 |z |
<(d+2)h —zle_i9|
=(d+2)|1- < z,n > | < 9d+ 2)8,

which shows »(Q5(¢)) C Ecs(e'®®). This proves (i).
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Now suppose 46 < p({) < 1/8. Note that p(z) < 1/2 by (3). On the
other hand,

A2 p( OV = 1- < 2,0 > |12 > V6

and thus p(z) > 6. So é < p(z) < 1/2. For simplicity assume p(z) =
1 — |z1]. Then [¢(2)| < |21]% + 1 — |21|? so that (recall d > 3)

1= ()] 2 21’ (1 = |21 |*7%) 2 %ﬂl S

6

1.8

which shows (22). The proof is complete.
We finally come to the proof of the main theorem.

Proof of Main Theorem. Let f be a Bloch function on D. Since
V| < don B and Ry = dy, we have

V(fo@)l? =IR(for)* = £ () P(IVel* = Re*) < & || FIIB(1—f]) "

Therefore, by Theorem 1, to prove f o ¢ € BMOA, it is sufficient to
show that du = (1 — |p|)7'dV is a Carleson measure. Before going
further, note that V(Qs(¢)) < C6™*! and

(4) / (1—A)~" 8 dA < C6™.
Es(e’?)

where 3 is the function introduced in Proposition 3.

Since (1 — |¢|)™! is integrable by Proposition 3, it is enough to con-
sider é sufficiently small. So assume 0 < § < 1/32 and fix ¢ € S. First
consider the case p(() < 46. Then, by Proposition 3, Lemma 4.(z) and
(4), we see u(Qs(C)) < C6". Next, consider the case 46 < p(() < 1/8.
In this case, by Lemma 4.(i7), we have pu(Qs(¢)) < C67'V(Qs(¢)) <
Cé™. Finally, if p(¢) > 1/8, then Qs(¢) C T where I' = {2 € B :
p(z) > 1/32}. Since 1 — |p| has a positive minimum on I, we see that
w(@Qs(C)) < CV(Qs(C)) < Co™*H! < C6™. This completes the proof.

A close look at the proof of the main theorem gives another class
of functions for which the composition property in question hold as
follows.
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REMARK. Suppose k and ¢ are positive integers such that k+¢ = n.
Let h be a holomorphic homogeneous polynomial of degree d > 3 on C*
such that h(B¢) = D and |VA| < d on By. Let a € D and define

$(z) =28+ + 28 + ah(zrgr, - ,2a) (2 €CP).

Then the analogues of Proposition 3 and Lemma 4 hold for i by exactly
the same argument. Since |[Vh| < d on By, we also have |Vy| < d on
B by the homogeneity of Vh. We therefore conclude: f o € BMOA
for every f € B.

Note. After we completed the present paper, Wade Ramey and Da-
vid Ullrich inform us that they have recently obtained a general result
concerning the composition property in question by using an entirely
different method.
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