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ON THE DIMENSION OF
AMALGAMATED ORDERED SETS

JEH GWON LEE

The dimension problem has been one of central themes in the theory
of ordered sets. In this paper we focus on amalgamated ordered sets.
Although some results can be obviously applied to infinite cases, we
assume throughout that all ordered set are finite.

If A and B are ordered sets whose orders agree on A N B, then the
amalgam of A and B is defined to be the set A U B in which the order
1s the transitive closure of the union of the two orders, i.e., the smallest
order containing the two orders, and is denoted by A v B. We then
may have a naive conjecture that dm A v B < dim A + dim B for any
ordered sets A and B. But it is quite surprising that the dimension of
the amalgam of certain 2-dimensional ordered sets can be arbitrarily
large. In fact, we have two interesting examples.

ExaMpPLES. 1) Let S, be the n-dimensional standard ordered set
and U, the ordered set obtained from S, by subdividing every edge.
Although U, is of dimension n (see Lee, Liu, Nowakowski and Rival
[3]), it is the amalgam of two 2-dimensional subsets A and B, where A
consists of the maximal elements and the new ones and B consists of
the minimal elements and the new ones. This was pointed out by H.
A. Kierstead.

2) Let us consider the following particular subset T, of the lattice
of all subsets of X = {1,2,--- ;n} which can be found in Lee, Liu,
Nowakowski and Rival [3]:

T, = {{1}*{2}"" ,{71},{1,2},{2,3},"' ’ ‘{n71}7
X = {n}, X {1}, , X = {n—1}).
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Clearly, all minimal elements and all maximal elements of T}, consti-
tute the n-dimensional standard ordered set so that T}, is of dimension
n. Now we divide T, into two 2-dimensional subsets A and B whose
amalgam is T}, itself :

A= {{1}7{2}’ a{n}a{1a2}5{2’3}7"' ,{Tl - ])n}a
e, X = {n}vX—' {1}}7

B = {{n},{1},{n - 1,n},{n,1},{1,2},--- , X - {1}, X — {2},
R

The following figure for n = 5 illustrates this example, where dots
correspond to AN B.

But not every ordered set is divided into two 2-dimensional subsets.
For instance, it is not difficult to check that S5 cannot be the amalgam
of any two of its 2-dimensional subsets. On the other hand, we observe
that AN B is an antichain in the first example and the width of AN B
in the second one is 2. Only the case that the width of AN B i1s 1, 1.e.,
AN B is a chain, will be considered later.

Now it is natural to ask when the conjecture holds. The following is
the first result on this problem.

THEOREM 1. (Lee [2]). Let AV B be the amalgam of ordered sets
A and B. If the join (dually, the meet) of any subset of AN B exists
and belongs to AN B, then dim AV B < dim 4 + dim B.

We here mention another corollary of the preceding theorem.

COROLLARY 2. Ifa lattice L is the amalgam of two sublattices A and
B of L and if ANB is also a sublattice of L, then dim L < dim A+dim B.

The theorem also tells us that if AN B is a chain then dm AV B <
dim A + dim B. But this can be improved. For an ordered set P and
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c € P, we write [¢) = {z € Plc <z}, (c]={z € Plz <c}, (c¢)={z €
Plc < z} and (¢) = {z € P|z < ¢}. The ordinal sum P, @ P, &--- @ P,
of ordered sets Py, P, --- , P, is the set preserving the order of each P;
with the new order relations defined by z < y whenever z € P; and
y € P with j < k.

THEOREM 3. If A and B are ordered sets such that AN B is a chain,
then dim A V B < max{dim 4, dim B} + 2.

Proof. Let ANB = {c1 < ¢ < -+ < ¢x}. We may assume, without
loss of generality, that m = dim A > dim B. Let {Ei}i = 1,2,--- ,m}
and {F;lt = 1,2,--- ,m} be realizers of A and B, respectively. Now we
construct two particular linear extensions of AV B. Let L4 be a linear
extension of

A=y @ (alnBa((a)—le)NAd{a]-(a)NBo- -
D(ck—1) = [ee)) NA® ((ek] = (ex—1]) N B D (ex] N A B ~ (ck]

and, symmetrically, Lg be a linear extension of

B—len)®(a]NA&((er) = [)NB& (] - (a)NAs -
B((ck—1) = [cx)) N B P ({ek]) — (ck-1]) NA S (k] N B D A — {cx]-

Then we can show, as desired, that any family of linear extensions of
AV B, one from each amalgam E; V Fi(i = 1,2,---m), together with
L4 and Lp form a realizer of AV B. For instance, if @ is incomparable
withbfora€ Aandbe Bin AVBthena<bin Lsanda > bin Lp.

However no ordered sets 4 and B have been yet found such that
ANBis a chain and dimA V B = max{dim 4, dim B} + 2. We then

pose a question.

PROBLEM. Is it true that if AN B is a chain in the amalgam AV B
of ordered sets A and B then dim AV B < max{dim A4, dim B} + 1?

This question is answered positvely when A and B meet at one point.
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THEOREM 4. If A and B are ordered sets such that |[AN B| = 1,
then dim A V B < max{dim A,dim B} + 1.

Proof. Let AN B = {c}. We may again assume that m = dimA >
dim B. Let {E;| = 1,2,---m} and {Fi|i = 1,2,--- ,m} be realizers of
A and B, respectively. Now the following are extensions of the amalgam
AV B for its realizer :

B-[cy®(c|]nA®(c)NBBA—(c];
E; — [c) G}(c]ﬂF,'@E,' — (C]GBF,' - (c]
fori =1,2,...,m.
We define a generalized amalgam
V(A =1,2,..,n)=V(Aili =1,2,..,n—-1)V A,
of ordered sets A; ( = 1,2,...,n).

THEOREM 5. If Ay, A, ..., Ay are ordered sets and there is a unique
common element x in all A;, then

dim /(A4 = 1,2, ...,n) < max{dim A;|i = 1,2, ...,n} + 2.
Proof. Let max{dim A;|: = 1,2, -- ,n} = m. then there is a realizer

{Ei1, Ei2, ..., Eim} for each A;. We now construct a realizer of \/(A;l: =

1,2,...,n) as follows:

F Apn—[0) B A1 —[2) @ B AL - [2) ® {2}
(2)NA, B (2)NAp1 - @ (z) N Ay

G: ()N Ap B(T) N A1 DB (z)N A1 & {2}
An — (2] B Any — (2] ® - @ A1 — (z];

Hj: (z)NEy; & {(2)NEy;; @ - ®(z)NEn; & {z}®

(1‘)OEU@(LE>ﬂEgj@---G}(:r)ﬂEn]'

for j = 1,2,...,m. In fact, suppose that a and b are incomparable for
a € A, and b € Ag. Then it is enough to consider the case when h < k.
Since it does not happen that b < z < a, we have a < b in some Hj;.
On the other hand, if a < z then a € A — (] so that a > bin G, and
if a < z then b € Ax — [z) so that a > bin F.
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EXAMPLE. The preceding result is the best possible. For instance,
the ordered set obtained from M7? by deleting 0 and 1 is of dimension 4
and, on the other hand, such bound increases as the number of elements
of the intersection does when the intersection is a chain (see Kelly [1}).

However we have a special case of the preceding theorem.

THEOREM 6. If Ay, Ay, ...A, are oredered sets and z is a unique
common element in all A; that is minimal (dually, maximal) in each
Ai, then dim V(4ili = 1,2,...,n) < max{dim 4;|: = 1,2, won}+ 1.

Proof. Let max{dim 4;i =,1,2...,n} = m. We have m linear exten-
sions of \/(4:]t =1,2,...,n) as in the proof of preceding theorem and a
linear extension

{z} e An — {2} @ Auy — {2} -0 A — {2}

EXAMPLES. For each n > 3, the following ordered set with n maxi-
mal elements is of dimension 3.

Recall that in Corollary 2 we considered a lattice amalgamation.
When the lattice is distributive the upper bound can be improved much
further.

LEMMA 7. Every distributive lattice D of dimension at least n con-
tains an interval isomorphic to the Boolean lattice 2.

Proof. It is well known that the map f of D to H(J(D)) defined
by f(a) = (a] N J(D) is an isomorphism, where J(D) is the ordered
set of all nonzero join-irreducible elements and H(J (D)) is the lattice
of all hereditary subsets (order ideals) of J(D). Since it is also a clas-
sical fact that dim D = width(J(D)), there is an n-element antichain
{ai,az,...,an} in J(D). Let X = |J(a;) N J(D). Then a; = F 1 {a]) =
fTYX) = 2 for i = 1,2,..,n and ay,a.,...,a, are all distinct. If
V @i = y then obviously the interval [z, y] is isomorphic to 27,
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THEOREM 8. Let a distributive lattice D be the amalgam of its
sublattices A and B such that A N B is also a sublattice of D. Then
dim D < max{dim A, dim B} + 1. In particular, dim D = max{dim 4,
dim B} if dim A # dim B.

Proof. Let m = max{dim A, dim B}. Suppose that dimD > m + 1.
By Lemma 7, D contains an interval C that is isomorphic to 2m+2,
If there are two distinct atoms a and b of C such that a,b € A — B,
then aV ¢ > a and bV ¢ > b for any atom c of C other than a and b.
Hence, aV c,bVec € Asothat c=(aVec)A(bVe)€ A Thus C C A,
which is impossible. Consequently, C has at least m + 1 atoms in B,
so that dim B > m + 1, which is still a contradiction, This proves the
first assertion.

Next, suppose that dimD > m = dim A > dim B. Then, again by
Lemma 7, D contains 2™%! as an interval. As above, dimB > m,
which is also a contradiction.

EXAMPLES. The above inequality is the best possible. In fact, it is
easy to construct an {n + 1)-dimensional Boolean lattice by amalgama-
tion two n-dimensional lattices that are isomorphic to 2*7! x 3.

However we do not know at this moment whether or not the above
theorem holds for an arbitrary lattice. This problem is stated in the
following.

PROBLEM. Is it true that if a lattice L is the amalgam of its sub-
lattices A and B such that A N B is also a sublattice of L, then
dim L < max{dim A,dim B} + 1?7

Finally we have some simple observations.

THEOREM 9. If A and B are ordered sets such that z,y € A or
x,y € B whenever (z,y) is a critical pair in AV B, then dim AV B <
dim A + dim B.

Proof. The hypothesis implies that if (z,y) is critical in AV B then
it is also critical in A or B. Hence, the union of two respective realizers
of A and B forms a set of partial extensions of A V B realizing it.
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COROLLARY 10. If A and B are ordered sets such that z < y for
anyr€ A— Bandy € B— A, then dimAV B < dim A + dim B.

THEOREM 11. (cf. Corollary 3.2 [2]). If A and B are ordered sets
such that AN B is an order ideal (dually, an order filter) of both A and
B, then dim AV B < dim A + dim B.

Proof. Let {Eili € I} and {F;|j € J} be realizers of 4 and B,
respectively. Then, for each 7 € I, we take G; to be a linear extension
of AV B containing FE; in which every element of B is greater than
elements of A whenever possible, and similarly we take H; for each
7 € J. In fact, 2 and y are incomparable for £ € A — B and ye B— A,
while z < y in all G; and z > y in all H;.
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