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UNIQUENESS FOR THE MARTINGALE PROBLEM
WITH DISCONTINUOUS COEFFICIENT

YOUNGMEE KwWON

1. Introduction
Let L be the operator defined on f € C*(R?) by

d 2
Li(z)= 3" éa,-,-(wgg;‘—xj(x)

i,y=1

where a;; are bounded and measurable and the matrix a is strictly
elliptic. Then saying P, is a solution of martingale problem with respect
to L starting from z means that P; is a measure on C([0, c0), R?) such
that

and
(2) F(X) = f(Xo) - / LF(X,)ds

is a P, local martingale for all f € C?(R?%). We denote the martin-
gale problem with respect to L starting from z by (M P), — L. When
a is continuous, we have existence and uniqueness of the solution of
(MP); — L. When a is discontinuous, existence is known to hold while
uniqueness remains open for d > 3.

Supposed the a;; are bounded, strictly elliptic and continuous on R\
{0} and define a(z) = a:;(2"z). Also suppose a™ — @ in measure
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on B(0, R) for all R < oo where the af} are continuous on R%\ {0},
strictly ellipic and radially homogeneous. Then we prove uniqueness of
martingale problem with respect to L in Section 3. And we get a result
about uniform convergence of solution of Dirichlet problem in the unit
ball.

In Section 2, we give some preliminaries and, in Section 3, we prove
our main results.

2. Preliminaries

Suppose a : R — R*? is measurable, bounded and strictly elliptic:
there is A > 0 such that

d
Z aij I)yzyj>/\zy, for all Y1,° -, Yd.

=1

Let

(3) Lf(z)= > Z aij(z) 52 3f$1( x)

1,7=1

Let @ = C([0,00), R?) and let X,(w) = w(t). We say a probability
measure P satisfies the martingale problem for L, starting from z € R¢
if P is a measure satisfying the condition (1) and (2) replacing L with
L,. Recall we denote the martingale problem with respect to L, by
(MP), — L,.

Saying P is unique means that any two solutions to the martingale
problem for L, agree on F = 0(X;,t € [0,00)).

Let S = {z € R*: |z| = 1},B(«,R) = {y € R? : |y — 2| < R} and
7r = inf{t : |X¢| > r}. Our main result, proved in Section 3, is Theorem
2.1.

THEOREM 2.1. Suppose the A,]- are bounded, strictly elliptrc, con-
tinuous on R\ {0} and define a! n(z) = a;j(2"z). Suppose a" — a*
in measure on B(0, R) for all R < oo where the afs are continuous on
R\ {0}, strictly elliptic and radially homogeneous:

ajy(rz) = ajy(z) forr > 0.
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Then Py, the solution of the martingale problem with respect to L,
starting from x, is unique for all z € R?.

3. Uniqueness

Let Lg» and L.~ be the operators defined by (3) with respect to
i; and a77. Then existence and uniqueness of the martingale problem
with respect to Ly~ is known (See [BP], [SV]). Also we have existence
of the martingale problem for Lg» and Ly~ (see Ch.6 of [SV]). Let P
be a solution for (MP), — L,» and let P® be the unique solution for
(MP); —La. Then P! — PZ° weakly by Exercise 7.3.2 of [SV], since
P7° is unique and the inequality in (3.1) of Exercise 7.3.2 of [SV] holds
for P;' and P2 by Krylov [Kr]: for all n > 1 and n = oo,

a

.,
B / FOX)dt] < Cllflloreay

for all p > d,T > 0,R > 0 and f € Co(R?) with supp(f) C B(0, R),
where C' depends only on the ellipticity and bounds on a,;, T and R.
To show the uniqueness of (M P); — L,, consider @, and Q, defined
on C(S) by
Qnlz,dy) = P;(X,,/2 € dy; 72 < 7o)

and

Qoo(xady) = P;roo(JYTz/Q € dy; g << TO)'

for ,y € S. Since X, is continuous P a.s., 7. T o as € | 0. Therefore
7o 18 P;°-continuous ([Ku], p.13). Then provided 73 is a P2°-continuous
functional on C(R%),Q.f(z) — Qoo f(z) on &, since P} — P
weakly. And to show that 5 is P2°-continuous, it suffices to show that

Toye — T2 a8, PXase — 0.

LEMMA 3.1. 754 — 79 a.s. P® ase — 0.

T

Proof. We know under P2°, X solves

tATY
Xinr — 7 = / o(X,)dB,

0
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for some o where (00*)i; = af¥ and B is a d-dimensional Brownian

motion. X; is a martingale and < Xt,X’ >= fo aiP(Xs)ds. Let Ry =
|X¢|. Then by Ito’s formula, for t < 7o,

dR: = | X' X}o(X:)dBy + (2R,) ™ ( trace 00*(Xy)
— | X4 T2 X oo* (X)X, )dt.

Let A; = fo |Xs|7?X00*(X,)X,ds. Then since aff = (g0*);; is strictly
elliptic and bounded, ¢ < | X,|72X?00*(X,)X, < M for some ¢ > 0 and
M < oc. Let S = RA,‘" Then S; is a semimartingale, < Sy, S; >=t,
and

dS; = dW, + (Cy/2S:)dt

where W, is a 1-dimensional Brownian Motion under P2° and
Cy = trace 00*(Xy) — | X¢| 2 X oo* (X)X

But |C¢| is uniformly bounded. Therefore by using a Girsanov trans-
formation, there exists a probability measure P on C[0,00) such that
St is a standard Brownian motion up to the time S; hits 1/2. Since Pg°
is equivalent to P, 734 — T2 a.s., PS°.

Hence 75 is a P °-continuous functional. Therefore we get

Qnf(z) — Qoof(z)on S as n — oco.
On the other hand, by Krylov and Safonov [KS],

(4) Qnf(z) = Qnf(y)l < Klz —y|"[I £l

where K and 7 depend only on the ellipticity and bounds on a;};. Since
aj; — au in measure, we can take a uniform bound of ellipticity for
a; and agy. Therefore there exist a single K and ~ for which (4) holds
for all n = 1,2,--- ,00. Hence {Qnf, Qo f} forms an equicontinuous
family. Therefore @, f — Qo f uniformly on 5. Also @r and Qo
are strongly positive by the support theorem ([SV]). Hence @, and
Qo are strongly positive and compact operators on C(S). Therefore
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by Krein-Rutman theorem, p, and p, the frist eigenvalues of Q, and
(o respectively, are positive and also the corresponding eigenfunctions
¥n and ¢ are strictly positive ([KR] Theorems 6.1, 6.3 and the proof of
Theorem 6.3). Moreover, if f € C(S)

an(l') = Pnﬂn(f)‘Pn(x) + Rnf(x)
Qoo f(z) = pp(f)pn + Rf(z)

where p, i, are eigenvectors for the adjoint operators Q% and @}, cor-
responding p and p, and Ry, R are linear functionals on C(S) with

lim sup /|| R7?|| < pn and lim sup %/]|R™|| < p. Then by the analogue

m

of Theorem 4.3 and 4.4 of [Kw], we have p, — p, ¢, — ¢ uniformly
on S, un(fn) — pu(f) and R,f, — Rf where lfn — flIl — 0 as
n — oo.

Let h: R — R be continuous and 0 near 0 and P? denote the law
of X; under P, killed when first reaching 0. That is

Pf()(tl € Al»"‘ a)(tn € An) = Pz( ﬂ {Xre € Aiati < TO})-

1<i<n

To show that P,, the solution of (MP), — L,, is unique, it suffices
to show that for given h, I(h) does not depend on the choice of the
solutions (M P), — L, for z = 0 by Theorem 5.5 of [BP] and Theorem
4.7 of [Kw| where

_ ER[E e (TR (X, )]
M) =5y (> ma)

and h(z) =0 1if |z] < e.

Then by the analogue of the proof of Theorem 4.7 of [Kw], it can be
proved that I(h) does not depend on the choice of (M P), — L, and we
have uniqueness of (M P), — L,. Hence we get Theorem 2.1.

Suppose a;; are as in Theorem 2.1. Suppose a;; are smooth ap-
proximations to the a;; and a;; — a;j in the sense of Theorem 2.1
Then the solution of the martingale problem with respect to a?; will be
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unique. Let P} be the unique solution such that P} (X = z) =1 and
similarly define P, with respect to a,;. Then P} — P;.

Let f € C(S) and let h, be a solution of the Dirichlet problem on
the unit ball with continuous boundary fuction f for the operator L, :

[ o 3
" Z Ea“(z)ax.-azj‘
1’]

That is
thn = 0

on the interior of the unit ball and

hn=f

on the boundary of the unit ball. Then h, is unique and h,(z) =
EY? f(X.,). Therefore for z such that 0 <| z |< 1, h,(2) — h(z) =
EP: f(X:), since P} — P, and 71 is P; continuous by Lemma 3.1.

Also, as the proof of Theorem 2.1 by Krylov and Safonov [KS],

|hn(z) — ha(y)| < Kz — y|7|| f|l

for |z[,|y| < 1 where K and v depend on the ellipticity of aj;. Since
al — aij, ha(2), h(z) are equicontinuous by the same argument as
the proof of Theorem 2.1. Hence h,(z) — h(z) uniformly on compact
subsets of the interior of the unit ball and we get Theorem 3.1, a re-
sult of Caffarelli [Ca] recently proved using partial differential equation

techniques.

n

THEOREM 3.1. Suppose the a;; are as in Theorem 2.1. Suppose aj;
are smooth approximations to the a;; with af; — a;; as in Theorem
2.1. Let f € C(S) and Ilet h,, be the solution of the Dirichlet problem of
the operator L,, on the unit ball with boundary function f. Then hy(z)
converges uniformly on compact subsets of the interior of the unit ball
to a function h wihch depends only on f and a;; and does not depend

on the approximation a;.
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