UNIQUENESS FOR THE MARTINGALE PROBLEM WITH DISCONTINUOUS COEFFICIENT

YOUNGMEE KWON

1. Introduction

Let L be the operator defined on $f \in C^2(\mathbb{R}^d)$ by

$$Lf(x) = \sum_{i,j=1}^{d} \frac{1}{2} a_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$$

where a_{ij} are bounded and measurable and the matrix a is strictly elliptic. Then saying P_x is a solution of martingale problem with respect to L starting from x means that P_x is a measure on $C([0,\infty), \mathbb{R}^d)$ such that

$$(1) \dot{P}_x(X_0 = x) = 1$$

and

(2)
$$f(X_t) - f(X_0) - \int_0^t Lf(X_s)ds$$

is a P_x local martingale for all $f \in C^2(\mathbb{R}^d)$. We denote the martingale problem with respect to L starting from x by $(MP)_x - L$. When a is continuous, we have existence and uniqueness of the solution of $(MP)_x - L$. When a is discontinuous, existence is known to hold while uniqueness remains open for $d \geq 3$.

Supposed the a_{ij} are bounded, strictly elliptic and continuous on $\mathbb{R}^d \setminus \{0\}$ and define $a_{ij}^n(x) = a_{ij}(2^n x)$. Also suppose $a^n \longrightarrow a^\infty$ in measure

Received May 10, 1991.

This research is supported by the Post-Doctoral Fellowship from the Global Analysis Research Center at Seoul National University.

on B(0,R) for all $R < \infty$ where the a_{ij}^{∞} are continuous on $R^d \setminus \{0\}$, strictly ellipic and radially homogeneous. Then we prove uniqueness of martingale problem with respect to L in Section 3. And we get a result about uniform convergence of solution of Dirichlet problem in the unit ball.

In Section 2, we give some preliminaries and, in Section 3, we prove our main results.

2. Preliminaries

Suppose $a: R^d \longrightarrow R^{d \cdot d}$ is measurable, bounded and strictly elliptic: there is $\lambda > 0$ such that

$$\sum_{i,j=1}^{d} a_{ij}(x)y_iy_j \ge \lambda \sum_{i=1}^{d} y_i^2 \quad \text{for all } y_1, \dots, y_d.$$

Let

(3)
$$Lf(x) = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

Let $\Omega = C([0,\infty), R^d)$ and let $X_t(\omega) = \omega(t)$. We say a probability measure P satisfies the martingale problem for L_a starting from $x \in R^d$ if P is a measure satisfying the condition (1) and (2) replacing L with L_a . Recall we denote the martingale problem with respect to L_a by $(MP)_x - L_a$.

Saying P is unique means that any two solutions to the martingale problem for L_a agree on $\mathcal{F}_{\infty} = \sigma(X_t, t \in [0, \infty))$.

Let $S = \{x \in \mathbb{R}^d : |x| = 1\}, B(x, \mathbb{R}) = \{y \in \mathbb{R}^d : |y - x| \leq \mathbb{R}\}$ and $\tau_r = \inf\{t : |X_t| \geq r\}$. Our main result, proved in Section 3, is Theorem 2.1.

THEOREM 2.1. Suppose the A_{ij} are bounded, strictly elliptre, continuous on $R^d \setminus \{0\}$ and define $a_{ij}^n(x) = a_{ij}(2^n x)$. Suppose $a^n \longrightarrow a^{\infty}$ in measure on B(0,R) for all $R < \infty$ where the a_{ij}^{∞} are continuous on $R^d \setminus \{0\}$, strictly elliptic and radially homogeneous:

$$a_{ij}^{\infty}(rx) = a_{ij}^{\infty}(x)$$
 for $r > 0$.

Then P_x , the solution of the martingale problem with respect to L_a starting from x, is unique for all $x \in \mathbb{R}^d$.

3. Uniqueness

Let L_{a^n} and $L_{a^{\infty}}$ be the operators defined by (3) with respect to a_{ij}^n and a_{ij}^{∞} . Then existence and uniqueness of the martingale problem with respect to $L_{a^{\infty}}$ is known (See [BP], [SV]). Also we have existence of the martingale problem for L_{a^n} and $L_{a^{\infty}}$ (see Ch.6 of [SV]). Let P_x^n be a solution for $(MP)_x - L_{a^n}$ and let P_x^{∞} be the unique solution for $(MP)_x - L_{a^{\infty}}$. Then $P_x^n \longrightarrow P_x^{\infty}$ weakly by Exercise 7.3.2 of [SV], since P_x^{∞} is unique and the inequality in (3.1) of Exercise 7.3.2 of [SV] holds for P_x^n and P_x^{∞} by Krylov [Kr]: for all $n \geq 1$ and $n = \infty$,

$$|E^{P_x^n} \int_0^T f(X_t) dt| \le C ||f||_{L^p(P^d)}$$

for all p > d, T > 0, R > 0 and $f \in C_0(\mathbb{R}^d)$ with $\text{supp}(f) \subset B(0, R)$, where C depends only on the ellipticity and bounds on a_{ij} , T and R.

To show the uniqueness of $(MP)_x - L_a$, consider Q_n and Q_∞ defined on C(S) by

$$Q_n(x, dy) = P_x^n(X_{\tau_2}/2 \in dy; \tau_2 < \tau_0)$$

and

$$Q_{\infty}(x,dy) = P_x^{\infty}(X_{\tau_2}/2 \in dy; \tau_2 < \tau_0).$$

for $x, y \in S$. Since X_t is continuous P_x^{∞} a.s., $\tau_{\varepsilon} \uparrow \tau_0$ as $\varepsilon \downarrow 0$. Therefore τ_0 is P_x^{∞} -continuous ([Ku], p.13). Then provided τ_2 is a P_x^{∞} -continuous functional on $C(R^d), Q_n f(x) \longrightarrow Q_{\infty} f(x)$ on S, since $P_x^n \longrightarrow P_x^{\infty}$ weakly. And to show that τ_2 is P_x^{∞} -continuous, it suffices to show that $\tau_{2+\varepsilon} \longrightarrow \tau_2$ a.s. P_x^{∞} as $\varepsilon \longrightarrow 0$.

LEMMA 3.1. $\tau_{2+\varepsilon} \longrightarrow \tau_2$ a.s. P_x^{∞} as $\varepsilon \longrightarrow 0$.

Proof. We know under P_r^{∞}, X_t solves

$$X_{t \wedge \tau_0} - x = \int_0^{t \wedge \tau_0} \sigma(X_s) dB_s$$

Youngmee Kwon

for some σ where $(\sigma\sigma^*)_{ij} = a_{ij}^{\infty}$ and B_t is a d-dimensional Brownian motion. X_t is a martingale and $\langle X_t^i, X_t^j \rangle = \int_0^t a_{ij}^{\infty}(X_s) ds$. Let $R_t = |X_t|$. Then by Ito's formula, for $t < \tau_0$,

$$dR_t = |X_t|^{-1} X_t^* \sigma(X_t) dB_t + (2R_t)^{-1} (\text{trace } \sigma \sigma^*(X_t)$$
$$-|X_t|^{-2} X_t^* \sigma \sigma^*(X_t) X_t) dt.$$

Let $A_t = \int_0^t |X_s|^{-2} X_s^* \sigma \sigma^*(X_s) X_s ds$. Then since $a_{ij}^{\infty} = (\sigma \sigma^*)_{ij}$ is strictly elliptic and bounded, $c < |X_s|^{-2} X_s^* \sigma \sigma^*(X_s) X_s < M$ for some c > 0 and $M < \infty$. Let $S_t = R_{A_t^{-1}}$. Then S_t is a semimartingale, $\langle S_t, S_t \rangle = t$, and

$$dS_t = dW_t + (C_t/2S_t)dt$$

where W_t is a 1-dimensional Brownian Motion under P_x^{∞} and

$$C_t = \operatorname{trace} \sigma \sigma^*(X_t) - |X_t|^{-2} X_t^* \sigma \sigma^*(X_t) X_t.$$

But $|C_t|$ is uniformly bounded. Therefore by using a Girsanov transformation, there exists a probability measure P on $C[0,\infty)$ such that S_t is a standard Brownian motion up to the time S_t hits 1/2. Since P_x^{∞} is equivalent to $P, \tau_{2+\epsilon} \longrightarrow \tau_2$ a.s., P_x^{∞} .

Hence τ_2 is a P_x^{∞} -continuous functional. Therefore we get

$$Q_n f(x) \longrightarrow Q_{\infty} f(x)$$
 on S as $n \longrightarrow \infty$.

On the other hand, by Krylov and Safonov [KS],

(4)
$$|Q_n f(x) - Q_n f(y)| \le K|x - y|^{\gamma} ||f||$$

where K and γ depend only on the ellipticity and bounds on a_{ij}^n . Since $a_{ij}^n \longrightarrow a_{ij}^\infty$ in measure, we can take a uniform bound of ellipticity for a_{ij}^n and a_{ij}^∞ . Therefore there exist a single K and γ for which (4) holds for all $n = 1, 2, \dots, \infty$. Hence $\{Q_n f, Q_{\infty} f\}$ forms an equicontinuous family. Therefore $Q_n f \longrightarrow Q_{\infty} f$ uniformly on S. Also Q_n and Q_{∞} are strongly positive by the support theorem ([SV]). Hence Q_n and Q_{∞} are strongly positive and compact operators on C(S). Therefore

by Krein-Rutman theorem, ρ_n and ρ , the frist eigenvalues of Q_n and Q_{∞} respectively, are positive and also the corresponding eigenfunctions φ_n and φ are strictly positive ([KR] Theorems 6.1, 6.3 and the proof of Theorem 6.3). Moreover, if $f \in C(S)$

$$Q_n f(x) = \rho_n \mu_n(f) \varphi_n(x) + R_n f(x)$$

$$Q_{\infty}f(x) = \rho\mu(f)\varphi_n + Rf(x)$$

where μ, μ_n are eigenvectors for the adjoint operators Q_{∞}^* and Q_n^* corresponding ρ and ρ_n and R_n, R are linear functionals on C(S) with $\limsup_m \sqrt[m]{\|R_n^m\|} < \rho_n$ and $\limsup_m \sqrt[m]{\|R^m\|} < \rho$. Then by the analogue of Theorem 4.3 and 4.4 of [Kw], we have $\rho_n \longrightarrow \rho, \varphi_n \longrightarrow \varphi$ uniformly on $S, \mu_n(f_n) \longrightarrow \mu(f)$ and $R_n f_n \longrightarrow Rf$ where $\|f_n - f\| \longrightarrow 0$ as $n \longrightarrow \infty$.

Let $h: \mathbb{R}^d \longrightarrow \mathbb{R}$ be continuous and 0 near 0 and P_x^0 denote the law of X_t under P_x killed when first reaching 0. That is

$$P_x^0(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n) = P_x(\bigcap_{1 \le i \le n} \{X_{t_i} \in A_i, t_i < \tau_0\}).$$

To show that P_x , the solution of $(MP)_x - L_a$, is unique, it suffices to show that for given h, I(h) does not depend on the choice of the solutions $(MP)_x - L_a$ for x = 0 by Theorem 5.5 of [BP] and Theorem 4.7 of [Kw] where

$$I(h) = \frac{E^{P_0} [E^{P_{X_{\tau_e}}^0} \int_0^{\tau_R} h(X_r) dt]}{E^{P_0} [P_{X_{\tau_e}}^0 (\tau_0 > \tau_R)]}$$

and $h(x) \equiv 0$ if $|x| < \varepsilon$.

Then by the analogue of the proof of Theorem 4.7 of [Kw], it can be proved that I(h) does not depend on the choice of $(MP)_x - L_a$ and we have uniqueness of $(MP)_x - L_a$. Hence we get Theorem 2.1.

Suppose a_{ij} are as in Theorem 2.1. Suppose a_{ij}^n are smooth approximations to the a_{ij} and $a_{ij}^n \longrightarrow a_{ij}$ in the sense of Theorem 2.1. Then the solution of the martingale problem with respect to a_{ij}^n will be

Youngmee Kwon

unique. Let P_x^n be the unique solution such that $P_x^n(X_0 = x) = 1$ and similarly define P_x with respect to a_{ij} . Then $P_x^n \longrightarrow P_x$.

Let $f \in C(S)$ and let h_n be a solution of the Dirichlet problem on the unit ball with continuous boundary function f for the operator L_n :

$$L_n = \sum_{i,j} \frac{1}{2} a_{ij}^n(x) \frac{\partial^2}{\partial x_i \partial x_j}.$$

That is

$$L_n h_n = 0$$

on the interior of the unit ball and

$$h_n = f$$

on the boundary of the unit ball. Then h_n is unique and $h_n(x) = E^{P_x^n} f(X_{\tau_1})$. Therefore for x such that 0 < |x| < 1, $h_n(x) \longrightarrow h(x) = E^{P_x} f(X_{\tau_1})$, since $P_x^n \longrightarrow P_x$ and τ_1 is P_x continuous by Lemma 3.1. Also, as the proof of Theorem 2.1 by Krylov and Safonov [KS],

$$|h_n(x) - h_n(y)| \le K|x - y|^{\gamma}||f||$$

for |x|, |y| < 1 where K and γ depend on the ellipticity of a_{ij}^n . Since $a_{ij}^n \longrightarrow a_{ij}, h_n(x), h(x)$ are equicontinuous by the same argument as the proof of Theorem 2.1. Hence $h_n(x) \longrightarrow h(x)$ uniformly on compact subsets of the interior of the unit ball and we get Theorem 3.1, a result of Caffarelli [Ca] recently proved using partial differential equation techniques.

THEOREM 3.1. Suppose the a_{ij} are as in Theorem 2.1. Suppose a_{ij}^n are smooth approximations to the a_{ij} with $a_{ij}^n \longrightarrow a_{ij}$ as in Theorem 2.1. Let $f \in C(S)$ and let h_n be the solution of the Dirichlet problem of the operator L_n on the unit ball with boundary function f. Then $h_n(x)$ converges uniformly on compact subsets of the interior of the unit ball to a function h which depends only on f and a_{ij} and does not depend on the approximation a_{ij}^n .

Uniqueness for the martingale problem with discontinuous coefficient

References

- [BP]. Bass, R. F., Pardoux, E. Uniqueness for diffusions with peicewise constant coefficients, Probab. Th. Rel. Fields, 76(1987), 557-572.
- [Ca]. Cafferelli, L. To appear.
- [KR]. Krein, M. G., Rutman, M. A. Linear operators leaving invairant a cone in a Banach space, Am. Math. Soc. Selected Translations Series 1, 10(1962), 199-325.
- [Kr]. Krylov, N. V. Certain bounds on the density of the distribution of stochastic integrals, Izv. Akad. Nauk., 38(1974), 228-248.
- [KS]. Krylov, N. V., Safonov, M. V. An estimate of the probability that a diffusion process hits a set of positive measure, Soviet Math. Dokl., 20(1979), 253-255.
- [Ku]. Kurtz, T. G. Approximation of population processes, CBMS-NSF Regional conference series in Applied Mathematics: Philadelphia, SIAM, 1981.
- [Kw]. Kwon, Y. The submartingale problem for Brownian motion in a cone with non-constant oblique reflection field, Probab. Th. Rel. Fields (to appear).
- [SV]. Stroock, D. W., Varadhan, S. R. S. Multidimensional diffusion process with boundary conditions, Commun. Pure Appl. Math., 24(1971), 147-225.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA