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ON THE RING OF INTEGERS OF
CYCLOTOMIC FUNCTION FIELDS

SUNGHAN BAE AND SANG-GEUN HAHN

0. Introduction

Carlitz module is used to study abelian extensions of K = Fy(T). In
number theory every abelian etension of Q is contained in a cyclotomic
field. Similarly every abelian extension of F(T) with some condition
on oo is contained in a cyclotomic function field. Hence the study of
cyclotomic functin fields in analogy with cyclotomic fields is an impor-
tant subject in number theory. Much are known in this direction such
as ring of integers, class groups and units ([G], [G-R]).

In this article we are concerned with the ring of integers in a cy-
clotomic function field. In [G], it is shown that the ring of integers is
generated by a primitive root of the Carlitz module using the ramifi-
cation theory and localization. Here we will give another proof, which
1s rather elementary and explicit, of this fact following the methods in

[W].

Notations.
K =Fy(T)
A = Ftirreduciblepolynomialin A
a(T),b(T),n(T) : monic polynomial in 4
a : a fixed generator of F.
enddemo
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1. Cyclotomic Function Fields and Cyclotomic Polynomials
We define the Carlitz module ¢ on A by

dr=TX 4+ X9,
It is known that the set Ay(7) of roots of

$a(r)(X) =0

generate an abelian extension K (A7) of K, which we call the a(T)-th
cyclotomic function field. By a primitive a(T)-th root of ¢, we mean a
root of @,(1) which generates the A-module Ay(7). The properties of
this extension are ;
ProrosiTION 1.1 ([H]).
a) Gal(K(Aqur))/K)=(A/a(T))*.
b) Only the places dividing a(T') and oo can ramify, and the ram-
ification index at oo is q — 1.
¢) If (a(T),b(T)) = (1), then K(Ayr)) and K(Ayr)) are linearly
disjoint over K.
d) K(Ay1y) = K(Ag()) where Ay¢r) is a primitive root of ¢q(t).
As in the number field case we can define the a(T)-th cyclotomic poly-
nomeal fqry(X) by

fary(X) = Irr( Ay (1), X, K)

where A1) Is a primitive o(T)-th root of ¢. Then

(+) IT fa(x) = g.(X).
dla
d:monic

PROPOSITION 1.2.
a) Let p(T) be an irreducible polynomial of degree d. Then

- (X))
fom(X) = i(—;){—

=p(T) + ay(THX 4+t ag_((T)X" 1 4 x9° 1
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and p(T)|ai(T) for all 1 < < d - 1. Also
Foryr (X) = fo(Speryr-1(X)).

b) for(T)rpu(Tye (X) = Fpr(T)pu (1) (Bpy (1yr1=1-p, (Tyre =1 (X))
¢) Fomyn(m(X) = fam)(Bper)( X))/ frry(X) if p(T) § (T).

d) fa(X)= (Hd‘,,(ﬁf)n/d(X))M(d) where

0 if d is not square free
p(d) = { (=1)" ifd is a product of r distinct primes
1 ifd=1.

Proof. The proofs are mostly analogous to those in number theory,
so we will only give the proof of a). The first statement is trivial. From

(*)

Sy (X) = F1(X) fory(X) - fpeny(X)
= ¢p(ry -1 (X) oy (X,

SO

Fory (X)) = ¢pry(X)/ bp(ryr-1(X)
= ¢p(r)(p(ryr-1(X))/ $pcryr—1(X)
= .fp(T)(¢p(T)"‘(X))-

LEMMA 1.3. Let A be a primitive p(T)-th root of ¢. Then
/\f;,;(T)()‘) =p(T).
Proof. We know, from Proposition (1.2) a), that

fpery(X) = p(T) + a X 4+ adX"d“l,
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Hence ,
o X) = ~(@ X% + - 4+ X7 7F).

Therefore \

X - fory(X) =p(T) = fomy(X).

Hence Af) 1y (A) = p(T), since fp(my(A) = 0.
We are going to generalize Lemma (1.3) for the power of p(T). Let

U(xX) = ¢p(T):'X:1(‘X)

LEMMA 1.4. Let A be a primitive p(T)"-th root of ¢. Then

bp(ryr-1(A) - f;(T)r(/\) =p(T)".

Proof. We know from Proposition (1.2) a), that

Fory(X) =p(T) + a; XI7'U(X)7™! 4 ap X0 U(X)7
4ot aqud—lU(X)q"—l’

SO
Forye (X) = = (X120 (X)171 4 a, X0 20(X)9 !
4o Clqud_zU(X)qd"l)
- (al)(q“l(]()()q"2 + azXq2_1(](X)q2"2
4ot aqud—l U(X)qd_2)U’(_X).
Then

Sp(ry =1 (X) - foryr (X) =(p(T) = for (X)U(X)
+(p(T) = fpr (X)X - U'(X).

Evaluating at X = A, we get
Sp(ryr =1 (M) fpiry- (A) = p(THU(X) + AU’ (X))
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As before, we have
U(X)+ XU'(X) = U(0).

Hence
UA)+AU'(A) =U(0) =p(T)",

and the result follows.

2. Ring of Integers
Our main theorem in this section is

THEOREM 2.1. Let A be a primitive p(T)"-th root of ¢. Then the
ring of integers in K(A) over A is

A[N].
To show the theorem we need some lemmas.
LEMMA 2.2, Let a(T), 6(T) € A be such that (p(T),a(T)b(T)) =

a(T)(A)
1). Then ———
(1) Then Pu()(A)

Proof. Same proof as in the number field case using the fact that

SN _ ey (B (V)
$ury(A) oy (A)
LEMMA 2.3. ()) is a prime ideal of Ok () and
(NP = (p(T))
where p(p(T)") = #(A/p(T)")* = ¢ V(g% - 1).

Proof.
Foryr (X)) = fomy (@p(ryr-1 (X))

=p(T) + ardpry— (X)) 4 + aal<15p(T)r—‘(X)qd_1

= I X =dan()

(a,p)=1
deg a<dr

is a unit in A[A].

Taking X = 0, we get the result, since ¢pyr-1(0) = 0.
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LEMMA 2.4, Let Ay,..., A be r x r matrices and C = (cij) be a
k x k matrix. Then

C]]Al, Clel, ey ClkAl

c2141, ce2d2, ..., carAs
det .

ce1 Ak, cpaAk, ..., crrpAk

= tdet Ay - det Ay ---det Ax(det ).

Proof.
(CllAla ci2d1, ..., ckd
Ck1 -Ak-, ck2 Ak, ..., Ckk.Ak
A A, 0 c”.Ir ci2d, ... c”.CIr
B 0 - A cprdeo oo

By elementary column and raw operations

C 0

ciidy ez

0 C
Hence we get the result.
LEMMA 2.5, furr(X) = J] (X' = ga@y(M)*h)
(a,p(T))=1
amonic
deg a<dr
Proof. Clear from the fact that
g2 _
[T(x —a'yy = xe7t —ae-1,

1=0
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LEMMA 2.6. Let a(T) be a monic polynomial with (a(T),p(T)) =1
and dega(T) < dr. Then

foeryr (Ba(r)(A)) = (unit)-(power of A)- H (Sam (NI = dumy (V)Y

b#a
b:monic
(5,p(T))=1
deg b<dr
Proof.
foryr(X) =[] (X' =demy(N)*)
b:monic
b,p):
deg b<dr
Hence
fory (X)) = Z (X1 = gy M) H(Xq—l — (M),
(c,p(ThH=1 b#c
So
Foy(ba(r)(V))

= (‘Yq“l - qbu('l‘)(’\)q_l )l

L1 (X7t = o (X)),

X=da(ry(A) bsta

But 2
.
(X7 = gan(V)* ) = [[(X = @'¢amy(A)
1=0
SO

q—2
(X'~ ¢a(T)(/\)q-1)l lX:%(T)(A) - H((ba(T)(/\) — a'ga(y(N))
=1

q—2

=6V (1 - D

=1

= (unit) - ¢¢E(T)(z\)q_2.
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and ¢,(7)(A) = (unit) - A by Lemma (2.2)

Proof of Theorem (2.1).
Let c € O}(()‘). Then

a; € K.

d(r—l)__l
b

c=ap+a A+ ag)\2 +--4+ a(qd_l)qd(r—l)_lA(qd_l)q
Following the methods given in [W], we get that a; has no p(T)-factor
in its denominator.

We assume that the set of monic polynomials prime to p(T) and
degree less that rd is well-ordered in some way. Write this set by

{n1,n2,...,nx}

where k = ¢ " 1(¢? — 1)/(q¢ — 1). Let on(T) be the automorphism of
K(X) associated to n(T) € (A/p(T)")*. Then

™M = ag + a1¢n(1y(A) + @2y (M) + - - - .

o
Let ¢ij =c¢ *" ™), Then

/ Co1

c
1] Al’ ¢"1 (A)q_lAla vy (bnl(’\)(q-_l)(k_l)Al ap
Az, $na (AT Ag, Lo, iy (W)@TDR-D 4, a
Cq——l,l = . . .
o | : k-1 )
€12 Ak’ qsnk(/\)q_lAkv sy ¢ﬂk(A)(q_l)( - )Ak A(g—1)-k
where
L a0 dn, (N2 o ga (N)92
T agn;(A) oo, a¥™2 g, (1)I2
A;j =1 . :

............. afl“’-lqsn; (A)9-2

[
Q
£ =]
|
~
3
—
>
g
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Because c;; and ¢n,(A) are algebraic integers, the denominators of a;
appear as factors of the determinant of the matrix

Al 4 ¢n1(A)q“'1A1, veey ¢"1 (A)(q*l)(k—])Al
A2a ¢n2(A)q—1A2, ey ¢n2(A)(q—1)(k—l)A2

Ag, ¢nk()\)"‘1Ak, o ¢nk(/\)(q—1)(k—1)Ak

Hence it suffices to show that det C' = (unit) - (power of A).
But

det 4; = H(at - ai)dJnj (A) = (unit) - (power of A).

i<t
Let
1 ¢, (NN, L, gn, (MDD
1 dn (ML L, G, (W)TDE-D
Then

det B = [[(n(0)77" = #ni (1) 7).

i<t

By lemma 2.4, it suffices to show that det B = (unit) - (power of 1), or
equivalently,

(det B)? = (unit) - (power of A).

But
(det B = £ [J(8n (M) = dnc(X)*7).
1#£4
We know that
k

for(X) = (X = gns (A7),

1=1
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Then

J i#]

() =3 (H(Xq*l - m.-u)q-‘)) (X = g, ()Y
J i#)
Hence

For(@n; (M) = 6, (N2 [[(0n; (N7 = 8, (3)77Y).
i#£]

Therefore
k
(det B)* = #H Sy (fn;(0)/ 6, (V)17
k
H /¢p(T)’ ‘(¢n, (X)) - ¢n,—()\)q"2. (Lemma 1.4)

It remains to show that ¢,(r)-- 1(¢n; (X)) is (unit) - (power of \). But
Op(Tyr-1(bn; (1)) is a primitive p(T)-th root of ¢. So

(p(yr=2(6n; (A)))*™F = (p(T)).

Since (p(T)) is totally ramified and @p(1)r-1(#n; (A)) is an algebraic
integer, ¢p(ryr-1(¢n, (X)) is (unit) - (power of A).

Now following the general methods given in [W], we get

COROLLARY. Let n € A, A\, a primitive n(T)-th root of ¢. Then
the ring of integers of K(An) over A is A[An).
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