ON THE SPECTRAL RIGIDITY OF ALMOST ISOSPECTRAL MANIFOLDS

HONG KYUNG PAK

1. Introduction

Let (M, g, J) be a closed Kähler manifold of complex dimension m > 1. We denote by Spec(M, g) the spectrum of the real Laplace-Beltrami operator Δ acting on functions on M. The following characterization problem on the spectral rigidity of the complex projective space (CP^m, g_0, J_0) with the standard complex structure J_0 and the Fubini-Study metric g_0 has been attacked by many mathematicians: if (M, g, J) and (CP^m, g_0, J_0) are isospectral then is it true that (M, g, J) is holomorphically isometric to (CP^m, g_0, J_0) ?

In [BGM], [LB], it is proved that if (M, J) is (CP^m, J_0) then the answer to the problem is affirmative. Tanno ([Ta]) has proved that the answer is affirmative if $m \leq 6$. Recently, Wu ([Wu]) has showed in a more general sense that if (M, g) and (CP^m, g_0) are $(-\frac{4}{m})$ -isospectral, $m \geq 4$, and if the second betti number $b_2(M)$ is equal to $b_2(CP^m)$ then the answer is affirmative.

The main purpose of this paper is to investigate the isospectral problem of $\mathbb{C}P^m$ without the assumption that $b_2(M) = b_2(\mathbb{C}P^m)$. Then we shall prove that the answer to the problem is yes in the following cases:

- (A) (M,g) and (CP^m,g_0) are (-1)-isospectral and $4 \le m \le 6$,
- (B) (M,g) and (CP^m,g_0) are $(-\frac{4}{m})$ -isospectral, $m \geq 4$ and $B_0 = B$.

2. Almost isospectral manifolds

Let (M,g) be a closed Riemannian manifold of dimension m. The Laplace-Beltrami operator Δ acting on functions on M has a discrete

spectrum $Spec(M,g) = \{0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n \nearrow \infty\}$. Consider the heat operator $e^{-t\Delta}$ given by

$$e^{-t\Delta}f(x) = \int_M K(t, x, y) f(y) \mu_M(y),$$

where $K(t, x, y) \in \text{Hom}(T_y M, T_x M)$ is the kernel function. We have the well-defined asymptotic expansion for the L^2 -trace of $e^{-t\Delta}$ for $t \downarrow 0$;

$$\operatorname{Tre}^{-t\Delta} = \sum_{n=0}^{\infty} e^{-t\lambda_n} \stackrel{t\downarrow 0}{\sim} (4\pi t)^{-\frac{m}{2}} \sum_{n=0}^{\infty} t^n a_n,$$

where $a_n := \int_M a_n(x, \Delta) \mu_M(x)$ are the spectral invariants of Δ depending only on the discrete spectrum Spec(M, g).

Let $R := (R_{jkl}^i)$, $\rho := (R_{ij}) = (\sum R_{ikj}^k)$ and $s := \sum R_{ii}$, i, j, k, l = 1, ..., m denote its Riemannian curvature tensor, Ricci curvature tensor and the scalar curvature of the Levi-Civita connection ∇ of M, respectively. It is well-known ([BGM],[Sa]) that

$$(1) a_0 = vol(M),$$

$$a_1 = \frac{1}{6} \int_M s \mu_M,$$

(3)
$$a_2 = \frac{1}{360} \int_M \{2|R|^2 - 2|\rho|^2 + 5s^2\} \mu_M,$$

$$a_{3} = \frac{1}{6!} \int_{M} \left\{ -\frac{1}{9} |\nabla R|^{2} - \frac{26}{63} |\nabla \rho|^{2} - \frac{142}{63} |\nabla s|^{2} - \frac{8}{21} R^{ij}{}_{kl} R^{kl}{}_{rs} R^{rs}{}_{ij} - \frac{8}{63} R^{rs} R_{r}{}^{jkl} R_{sjkl} + \frac{2}{3} s |R|^{2} - \frac{20}{63} R^{ik} R^{jl} R_{ijkl} - \frac{4}{7} R^{i}{}_{j} R^{j}{}_{k} R^{k}{}_{i} - \frac{2}{3} s |\rho|^{2} + \frac{5}{9} s^{3} \right\} \mu_{M}.$$

DEFINITION. We say that two Riemannian manifolds (M,g) and (\bar{M},\bar{g}) are isospectral if $Spec(M,g)=Spec(\bar{M},\bar{g})$, and more generally α -isospectral if $\limsup_{n\to\infty}|\lambda_n-\bar{\lambda}_n|n^{-\alpha}=C<\infty$.

On the spectral rigidity of almost isospectral manifolds

LEMMA(cf.[Wu]). Let (M, g) and (\bar{M}, \bar{g}) be two closed α -isospectral Riemannian m-manifolds.

- (i) If $\alpha = -\frac{4}{m}$ and $m \ge 4$ then $a_i = \bar{a}_i$, i = 0, 1, 2.
- (ii) If $\alpha = -1$ then $a_i = \bar{a}_i$ for all $i \leq \left[\frac{m}{2}\right]$.

Proof. (i) is proved in [Wu]. Further, we can prove (ii) by a similar argument of [Wu].

3. The conformal curvature tensor on a Hermitian manifold

Let (M,g) be a Hermitian manifold of complex dimension $m \geq 3$. Let R be its curvature tensor of the Hermitian connection of M. In terms of local complex coordinates $(z^1,...,z^m)$, we adopt ranges of indices: $i,j,k,\dots=1,...,m,i^*=i+m$, and $A,B,C,\dots=1,...,m,1^*,...,m^*$. We set $Z_i:=\frac{\partial}{\partial z^1}, Z_{i^*}:=\frac{\partial}{\partial z^1}$ and we define

$$R(Z_C, Z_D)Z_B := \sum R^A{}_{BCD}Z_A, \ R_{ABCD} := g(R(Z_C, Z_D)Z_B, Z_A).$$

Then we have the curvature tensor B_0 which is invariant under the conformal change of the Hermitian metrics ([KMP]);

(5)
$$B_{0,ij^{\bullet}kl^{\bullet}} = R_{ij^{\bullet}kl^{\bullet}} + \frac{1}{m} (g_{ij^{\bullet}}T_{kl^{\bullet}} + S_{ij^{\bullet}}g_{kl^{\bullet}})$$

$$- \frac{mr + (m^{2} - 2)s}{2m^{2}(m^{2} - 1)} g_{ij^{\bullet}}g_{kl^{\bullet}} + \frac{mr - s}{2m(m^{2} - 1)} g_{il^{\bullet}}g_{kj^{\bullet}},$$

where (R_{ij^*}) , (S_{ij^*}) , (T_{ij^*}) are distinct Ricci curvature tensors locally given by

$$\begin{split} R_{ij^{\bullet}} := -\sum g^{kl^{\bullet}} R_{il^{\bullet}kj^{\bullet}}, \ S_{ij^{\bullet}} := -\sum g^{kl^{\bullet}} R_{ij^{\bullet}kl^{\bullet}}, \\ T_{ij^{\bullet}} := -\sum g^{kl^{\bullet}} R_{kl^{\bullet}ij^{\bullet}}, \end{split}$$

and r, s, t distinct scalar curvatures by

$$r := 2 \sum R_{ii^*}, \ s := 2 \sum S_{ii^*}, \ t := 2 \sum T_{ii^*}.$$

In particular, if (M, g) is Kähler, then B_0 is written locally as followings;

$$B_{0,ij^{\bullet}kl^{\bullet}} = R_{ij^{\bullet}kl^{\bullet}} + \frac{1}{m} (g_{ij^{\bullet}}R_{kl^{\bullet}} + R_{ij^{\bullet}}g_{kl^{\bullet}})$$

$$- \frac{(m+2)s}{2m^{2}(m+1)} g_{ij^{\bullet}}g_{kl^{\bullet}} + \frac{s}{2m(m+1)} g_{il^{\bullet}}g_{kj^{\bullet}}.$$
(6)

Moreover, this tensor vanishes identically if and only if the Kähler metric has constant holomorphic sectional curvature ([KMP]).

4. Isospectral rigidity of CP^m

Let (M, g) be a closed Kähler manifold of complex dimension $m \geq 2$. In terms of local complex coordinates, the Riemannian curvature tensor R, the Ricci curvature tensor ρ and the scalar curvature s satisfy $|R|^2 = 4 \sum |R^i{}_{jkl^*}|^2$, $|\rho|^2 = 2 \sum |R_{ij^*}|^2$ and $s = 2 \sum R_{ii^*}$.

Let B be the Bochner curvature tensor on (M, q) given by

$$B_{ij^{\bullet}kl^{\bullet}} := R_{ij^{\bullet}kl^{\bullet}} + \frac{1}{m+2} \{ g_{ij^{\bullet}} R_{kl^{\bullet}} + R_{ij^{\bullet}} g_{kl^{\bullet}} + g_{il^{\bullet}} R_{kj^{\bullet}} + R_{il^{\bullet}} g_{kj^{\bullet}} \}$$

$$(7) \qquad -\frac{s}{2(m+1)(m+2)} \{ g_{ij^{\bullet}} g_{kl^{\bullet}} + g_{il^{\bullet}} g_{kj^{\bullet}} \}.$$

Then we have

(8)
$$|B|^2 = |R|^2 - \frac{8}{m+2}|\rho|^2 + \frac{2}{(m+1)(m+2)}s^2.$$

Note that a Kähler manifold (M, g) is constant holomorphic sectional curvature if and only if (M, g) is Bochner flat (B = 0) and Einstein.

Furthermore, we have

$$(9) |\rho|^2 \ge \frac{s^2}{2m},$$

the equality sign valids if and only if (M, g) is Einstein.

THEOREM A. For $4 \le m \le 6$, if a closed Kähler manifold (M, g) and (CP^m, g_0) are (-1)-isospectral then (M, g) is holomorphically isometric to (CP^m, g_0) .

Proof. Let (\bar{M}, \bar{g}) denote the complex projective space (CP^m, g_0) . By the Lemma, for m=4 or 5 we have $a_i=\bar{a}_i,\ i=0,1,2$. Since (\bar{M}, \bar{g}) is of constant holomorphic sectional curvature, (3) and (8) imply

(10)
$$\int_{M} \left[2|B|^{2} + \frac{2(6-m)}{m+2} \left(|\rho|^{2} - \frac{s^{2}}{2m} \right) \right] \mu_{M} + \frac{5m^{2} + 4m + 3}{m(m+1)} \left\{ \int_{M} s^{2} \mu_{M} - \int_{\bar{M}} \bar{s}^{2} \mu_{\bar{M}} \right\} = 0.$$

Moreover, the Schwarz inequality yields

$$(11) \qquad \int_{M} s^{2} \mu_{M} \geq \int_{\bar{M}} \bar{s}^{2} \mu_{\bar{M}}.$$

Thus it follows from (9),(10) and (11) that if m=4 or 5 then B=0, $|\rho|^2=\frac{s^2}{2m}$ and $s=\bar{s}$. Therefore (M,g) is of constant holomorphic sectional curvature.

Now, let m = 6. Then $a_i = \bar{a}_i$, i = 0, 1, 2, 3. This, together with (10), gives that B = 0 and $s = \bar{s} = \text{constant}$. By a similar way as in the proof of Tanno ([Ta]), we compute a_3 :

$$\begin{split} a_3 = & \frac{1}{6!} \int_M \left\{ \frac{32(3m^2 + 20m + 16)}{63m(m+1)(m+2)^2} - \frac{8(2m+1)}{63m(m+1)} + \frac{2(6-m)}{3(m+2)} \right\} s |\rho|^2 \mu_M \\ & + \frac{1}{6!} \int_M \left\{ \frac{35m^2 + 35m + 4}{63m(m+1)} + \frac{4(4-21m)}{63m(m+1)(m+2)} \right. \\ & \left. - \frac{16(m^2 + 6m + 6)}{21m(m+1)^2(m+2)^2} \right\} s^3 \mu_M. \end{split}$$

Thus from $a_3 = \bar{a}_3$ and (12), it follows that

$$\frac{1}{147} \int_{M} s \left(|\rho|^{2} - \frac{s^{2}}{12} \right) \mu_{M} - \frac{1}{147} \int_{\bar{M}} \bar{s} \left(|\bar{\rho}|^{2} - \frac{\bar{s}^{2}}{12} \right) \mu_{\bar{M}} + \frac{3281}{6174} \left[\int_{M} s^{3} \mu_{M} - \int_{\bar{M}} \bar{s}^{3} \mu_{\bar{M}} \right] = 0,$$

which implies that $|\rho|^2 = \frac{s^2}{12}$. Since B = 0, this means that (M,g) is of constant holomorphic sectional curvature. Therefore, by the characterization of complex manifolds with constant holomorphic sectional curvature ([BGM]), for $4 \le m \le 6$ (M,g) is holomorphically isometric to (CP^m, g_0) .

THEOREM B. For $m \geq 4$, if a closed Kähler manifold (M,g) and (CP^m, g_0) are $(-\frac{4}{m})$ -isospectral and if the conformal curvature tensor B_0 coincides with the Bochner curvature tensor B, then (M,g) is holomorphically isometric to (CP^m, g_0) .

Proof. Let $(\bar{M}, \bar{g}) := (CP^m, g_0)$. By the Lemma, we have $a_i = \bar{a}_i$, i = 0, 1, 2. On the other hand, by a direct computation, we have

(13)
$$|B_0|^2 = |B|^2 + \frac{4(m-2)}{m(m+2)} \left(|\rho|^2 - \frac{s^2}{2m} \right).$$

By assumption, (13) implies that $|\rho|^2 = \frac{s^2}{2m}$. Since (\bar{M}, \bar{g}) is of constant holomorphic sectional curvature, (3) and the above yield

(14)
$$\int_{M} 2|B_{0}|^{2} \mu_{M} + \frac{5m^{2} + 4m + 3}{m(m+1)} \left[\int_{M} s^{2} \mu_{M} - \int_{\bar{M}} \bar{s}^{2} \mu_{\bar{M}} \right] = 0.$$

Thus, combining (11) and (14) we obtain $B_0 = 0$, $s = \bar{s}$, which completes the proof.

REMARK. From the formula (13), we immediately see that two curvature tensors B_0 and B on a Kähler manifold (M,g) of complex dimension $m \geq 3$ coincides with each other if and only if (M,g) is a Kähler-Einstein manifold.

References

[BGM] M. Berger, P. Gauduchon & E. Mazet, "Le spectre d'une variété riemanniennes," Lecture Notes in Math., Springer-Verlag, 1971.

[KMP] H. Kitahara, K. Matsuo & J. S. Pak, A conformal curvature tensor field on Hermitian manifolds, J. Korean Math. Soc. 27(1990), 7-17.

[LB] A. Lascoux & M. Berger, "Variétés Kaehleriennes compactes," Lecture Notes in Math., Springer-Verlag, 1970.

On the spectral rigidity of almost isospectral manifolds

- [Sa] T. Sakai, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tohoku Math. J. 23(1971), 589-603.
- [Ta] S. Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tohoku Math. J. 25(1973), 391-403.
- [Wu] J. Y. Wu, On almost isospectral manifolds, Indiana Univ. Math. J. 39(1990), 1373-1381.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL, KANAZAWA UNIVERSITY, KANAZAWA, 920, JAPAN