A BERGMAN-CARLESON MEASURE CHARACTERIZATION OF BLOCH FUNCTIONS IN THE UNIT BALL OF \mathbb{C}^n

JUN SOO CHOA[†], HONG OH KIM[‡] AND YEON YONG PARK^{††}

1. Introduction

Let B denote the open unit ball of \mathbb{C}^n (throughout this paper n is a fixed positive integer) with its boundary S and ν the Lebesgue measure on B, normalized so that $\nu(B)=1$. For a function $f\in H^1(B)$, the Hardy space, we say that $f\in BMOA(B)$ if its radial limit function f^* on S is a function of bounded mean oscillations with respect to nonisotropic balls generated by the nonisotropic metric $(\zeta,\eta)\mapsto |1-\langle \zeta,\eta\rangle|^{1/2}$ on S. See [CRW] for details. A function f holomorphic on B is said to be a Bloch function, or $f\in \mathcal{B}(B)$ if and only if

$$\sup_{z \in B} (1 - |z|^2) |\nabla f(z)| < \infty,$$

where $\nabla f(z) = (\partial f/\partial z_1, \dots, \partial f/\partial z_n)$ is the complex gradient of f. See [T] for various other characterizations of $\mathcal{B}(B)$. For $\eta \in S$ and $\delta > 0$, we set

$$Q_{\delta}(\eta) = \{ z \in B : |1 - \langle z, \eta \rangle| < \delta \}.$$

Our starting point of this research is the following characterization of the space BMOA(B) in terms of Carleson measures, which is well-known (see [G, page 240]) on the discs and has been recently extended to the balls in [CC]: A holomorphic function f on B belongs to BMOA(B) if and only if

$$\int_{Q_{\delta}(\eta)} |\nabla f|^2 - |Rf|^2 d\nu = O(\delta^n)$$

Received December 5, 1991. Revised March 2, 1992.

This reseach was partially supported by KOSEF.

uniformly in $\eta \in S$ and $\delta > 0$.

Here and elsewhere, for holomorphic functions f on $B, \mathcal{R}f = \langle \nabla f, \bar{z} \rangle$ is the radial derivative of f.

It is well-known (see, for example, [CRW]) that the Bloch space $\mathcal{B}(B)$ can be considered as an area version of the space BMOA(B). Motivated by this fact, we prove in this paper the following new characterization of $\mathcal{B}(B)$. In what follows, a positive measure μ on B is called a Bergman-Carleson measure if

$$\mu(Q_{\delta}(\eta)) = O(\delta^{n+1})$$

uniformly in $\eta \in S$ and $\delta > 0$.

MAIN THEOREM. Suppose f is a holomorphic function on B. Then $f \in \mathcal{B}(B)$ if and only if $(1-|z|^2)(|\nabla f|^2-|\mathcal{R}f|)^2d\nu$ is a Bergman-Carleson measure.

In the course of proof, we also have some other characterizations of $\mathcal{B}(B)$.

2. Möbius-invariant characterizations of the Bloch space

First we introduce some notations. For $z, w \in \mathbb{C}^n$, let $\langle z, w \rangle = z_1 \overline{w}_1 \cdots + z_n \overline{w}_n$ denotes the complex inner product on \mathbb{C}^n and $|z| = \langle z, z \rangle^{1/2}$. For $a, z \in B, a \neq 0, \varphi_a$ denote the Möbius transformation of B defined by

$$\varphi_a(z) = \frac{a - P_a z - (1 - |a|^2)^{1/2} Q_a z}{1 - \langle z, a \rangle}$$

where $P_a z = \langle z, a \rangle a/|a|^2$ and $Q_a z = z - P_a z$. For z = 0, we let $\varphi_0(z) = -z$. The following property of φ_a is very useful in the proof of our main theorem:

(1)
$$J_R \varphi_a(z) = \left(\frac{1 - |a|^2}{|1 - \langle z, a \rangle|^2}\right)^{n+1}$$

where $z \in B$ and $J_R \varphi_a$ is the real Jacobian of φ_a . See [R, Section 2.2] for details. The invariant Laplacian $\tilde{\Delta}$ defined by

$$\tilde{\triangle} = 4(1 - |z|^2) \sum_{j,k=1}^{n} (\delta_{jk} - z_j \bar{z}_k) \partial^2 / \partial z_j \partial \bar{z}_k$$

where δ_{jk} is the Kroneckers symbol [R].

In the followings, C_{α} denote a positive constant, depending only on α , which may change on each occasion.

LEMMA 2.1. Suppose f is a holomorphic function on B with $|\nabla f(z)| \le M/(1-|z|^2)^{\alpha}$ for some $\alpha > 0$. If $\eta \in S$ with $\langle z, \eta \rangle = 0$ then

$$|\langle \nabla f(z), \bar{\eta} \rangle| \leq \begin{cases} C_{\alpha} M, & 0 < \alpha < \frac{1}{2}, \\ C_{\alpha} M \left(1 + \log \frac{1}{1 - |z|} \right), & \alpha = \frac{1}{2}, \\ C_{\alpha} M / (1 - |z|)^{\alpha - \frac{1}{2}}, & \alpha > \frac{1}{2}, \end{cases}$$

for some positive constant C_{α} .

Proof. Fix $z \in B$, $z \neq 0$ and write $z = |z|\zeta, \zeta \in S$. Given a point $\eta \in S$ such that $\langle \zeta, \eta \rangle = 0$, we define

$$g(\lambda, \mu) = f(\lambda \zeta + \mu \eta), \quad |\lambda|^2 + |\mu|^2 < 1,$$

then

(3)
$$\langle \nabla f(\lambda \zeta), \bar{\eta} \rangle = \frac{\partial g}{\partial \mu}(\lambda, 0)$$

$$= \langle \nabla f(0), \bar{\eta} \rangle + \int_{0}^{1} \frac{\partial^{2} g}{\partial \lambda \partial \mu}(t\lambda, 0) \lambda dt,$$

and

(4)
$$\frac{\partial^2 g}{\partial \lambda \partial \mu}(\lambda, 0) = \frac{1}{2\pi i} \int_{|\mu| = r} \frac{\frac{\partial g}{\partial \lambda}(\lambda, \mu)}{\mu^2} d\mu, \ |\lambda|^2 + r^2 < 1.$$

Since

$$\frac{\partial g}{\partial \lambda}(\lambda, \mu) = \langle \nabla f(\lambda \zeta + \mu \eta), \bar{\zeta} \rangle,$$

we have from (4) and the hypothesis

$$\begin{split} \left| \frac{\partial^2 g}{\partial \lambda \partial \mu}(\lambda, 0) \right| &\leq \frac{1}{r} \sup_{|\mu| = r} |\langle \nabla f(\lambda \zeta + \mu \eta), \bar{\zeta} \rangle| \\ &\leq \frac{M}{r(1 - |\lambda \zeta + \mu \eta|^2)^{\alpha}} \\ &= \frac{M}{r(1 - |\lambda|^2 - r^2)^{\alpha}}. \end{split}$$

Jun Soo Choa, Hong Oh Kim and Yeon Yong Park

If we take $r^2 = (1 - |\lambda|^2)/2$ then

$$\left| \frac{\partial^2 g}{\partial \lambda \partial \mu}(\lambda, 0) \right| \le C_{\alpha} M / (1 - |\lambda|^2)^{\alpha + 1/2}.$$

Therefore we have the following estimate from (3)

$$\begin{aligned} |\langle \nabla f(\lambda \zeta), \bar{\eta} \rangle| &\leq |\langle \nabla f(0), \bar{\eta} \rangle| + \int_{0}^{1} \left| \frac{\partial^{2} g}{\partial \lambda \partial \mu} (t\lambda, 0) \lambda \right| dt \\ &\leq M + C_{\alpha} M \int_{0}^{|\lambda|} \frac{dt}{(1 - t)^{\alpha + 1/2}}. \end{aligned}$$

If we take $\lambda = |z|$ in (5), we have (2) with a constant C_{α} independent of f.

For a function f holomorphic on B, the complex normal gradient of f is defined as

$$\nabla_N f = \begin{cases} \langle \nabla f, \bar{z}/|z| \rangle \bar{z}/|z|, & z \neq 0, \\ 0, & z = 0, \end{cases}$$

and the complex tangential gradient of f is defined as

$$\nabla_T f = \nabla f - \nabla_N f.$$

We note that

$$|\nabla f|^2 = |\nabla_N f|^2 + |\nabla_T f|^2$$

and

$$|\mathcal{R} f(z)| = |z| |\nabla_N f(z)|.$$

LEMMA 2.2. Let f be holomorphic on B and $|\nabla f(z)| \leq M/(1-|z|^2)^{\alpha}$ for some $\alpha > 0$. Then

(6)
$$|\nabla_T f(z)| \le \begin{cases} C_{\alpha} M, & 0 < \alpha < \frac{1}{2}, \\ C_{\alpha} M \left(1 + \log \frac{1}{1 - |z|} \right), & \alpha = \frac{1}{2}, \\ C_{\alpha} M / (1 - |z|)^{\alpha - \frac{1}{2}}, & \alpha > \frac{1}{2}, \end{cases}$$

for some positive constant C_{α} .

Proof. Let $z = |z|\zeta$, $\zeta \in S$. If we take orthonormal complements η_2, \dots, η_n of ζ , then we have

$$\nabla f(z) = \nabla_N f(z) + \sum_{i=2}^n \langle \nabla f(z), \bar{\eta}_j \rangle \bar{\eta}_j.$$

Therefore

$$abla_T f(z) = \sum_{j=2}^n \langle \nabla f(z), \bar{\eta}_j \rangle \eta_j$$

and so

(7)
$$|\nabla_T f(z)|^2 = \sum_{j=2}^n |\langle \nabla f(z), \bar{\eta}_j \rangle|^2.$$

If we apply Lemma 2.1 to (7), we get (6).

LEMMA 2.3. If f is holomorphic on B, then

$$\tilde{\Delta}|f|^2(z) = 4(1-|z|^2)(|\nabla f(z)|^2 - |\mathcal{R}f(z)|^2).$$

Proof. Easy exercise. See [CC].

The following Möbius-invariant characterizations of the Bloch space $\mathcal{B}(B)$ will play a crucial role in the proof the main theorem.

THEOREM 2.4. For f holomorphic on B, the followings are equivalent:

- (a) $f \in \mathcal{B}(B)$;
- (b) $\tilde{\Delta}|f|^2$ is bounded in B;
- (c) $\sup_{a \in B} \int_{B} \tilde{\Delta} |f|^{2}(z) J_{R} \varphi_{a}(z) d\nu(z) < \infty$.

Proof. (a) \Longrightarrow (b) : Suppose $f \in (B)$. Then

(8)
$$|\nabla f(z)| \le M/(1-|z|^2)$$

Jun Soo Choa, Hong Oh Kim and Yeon Yong Park

for some M > 0. By Lemma 2.3,

$$\tilde{\Delta}|f|^{2}(z) = 4(1 - |z|^{2})(|\nabla f(z)|^{2} - |\mathcal{R}f(z)|^{2})
= 4(1 - |z|^{2})(|\nabla_{N}f(z)|^{2} + |\nabla_{T}f(z)|^{2} - |z|^{2}|\nabla_{N}f(z)|^{2})
= 4(1 - |z|^{2})^{2}|\nabla_{N}f(z)|^{2} + 4(1 - |z|^{2})|\nabla_{T}f(z)|^{2}
\leq 4(1 - |z|^{2})^{2}|\nabla f(z)|^{2} + 4(1 - |z|^{2})|\nabla_{T}f(z)|^{2}.$$

Therefore by (8) and Lemma 2.2, $\tilde{\Delta}|f|^2(z)$ is bounded.

(b) \Longrightarrow (c): It is easy to compute

$$\int_{B} \tilde{\Delta}|f|^{2}(z)J_{R}\varphi_{a}(z)d\nu(z) \leq \sup_{z \in B} \tilde{\Delta}|f|^{2}(z)\int_{B} J_{R}\varphi_{a}(z)d\nu(z)$$
$$= \sup_{z \in B} \tilde{\Delta}|f|^{2}(z).$$

This shows the implication (b) \Longrightarrow (c).

(c) \Longrightarrow (a): Let M denote the quantity in (c). Fix 0 < r < 1. Then by subharmonicity of $|\nabla f|^2 \circ \varphi_a$ we have

$$|\nabla f(a)|^2 \leq \frac{1}{r^{2n}} \int_{rB} |\nabla f|^2 \circ \varphi_a(w) d\nu(w).$$

The change of variables $z = \varphi_a(w)$ turns this into

$$|\nabla f(a)|^2 \le \frac{1}{r^{2n}} \int_{\varphi_a(rB)} |\nabla f(z)|^2 J_R \varphi_a(z) d\nu(z).$$

Note that

$$1 - |z|^2 > \frac{(1-r)}{4}(1-|a|^2)$$
 for $z \in \varphi_a(rB)$

and

$$4(1-|z|^2)^2|\nabla f(z)|^2 \le \tilde{\Delta}|f|^2(z)$$
 for $z \in B$.

A Bergman-Carleson measure characterization of Bloch functions

It follows then that

$$\begin{split} |\nabla f(a)|^2 &\leq C_r \frac{1}{(1-|a|^2)^2} \int_{\varphi_a(rB)} (1-|z|^2)^2 |\nabla f(z)|^2 J_R \varphi_a(z) d\nu(z) \\ &\leq C_r \frac{1}{(1-|a|^2)^2} \int_{\varphi_a(rB)} \tilde{\Delta} |f|^2(z) J_R \varphi_a(z) d\nu(z) \\ &\leq C_r \frac{1}{(1-|a|^2)^2} \int_B \tilde{\Delta} |f|^2(z) J_R \varphi_a(z) d\nu(z) \end{split}$$

where $C_r = \left(\frac{4}{1-r}\right)^2/r^{2n}$. Therefore we see that

$$(1 - |a|^2)^2 |\nabla f(a)|^2 \le C_r M.$$

This proves the implication $(c) \Longrightarrow (a)$.

3. Proof of Main Theorem

We now give a characterization of Bloch space $\mathcal{B}(B)$ in terms of Bergman-Carleson measures. We begin with the following Möbius-invariant characterization of Bergman-Carleson measures.

PROPOSITION 3.1. A positive measure μ on B is a Bergman-Carleson measure if and only if

(9)
$$\sup_{a \in B} \int_{B} \left(\frac{1 - |a|^{2}}{|1 - \langle z, a \rangle|^{2}} \right)^{n+1} d\mu(z) = M < \infty.$$

Proof. Suppose μ is a Bergman-Carleson measure. It is known([CW]) that μ is a Bergman-Carleson measure on B if and only if

(10)
$$\int_{B} |f|^{2} d\mu \leq C \int_{B} |f|^{2} d\nu \text{ for all } f \in L^{2}(\nu) \cap H(B),$$

where C is a positive constant independent of f.

Note that

$$J_R\varphi_a = |J_C\varphi_a|^2, \ a \in B$$

where $J_C\varphi_a$ is the complex Jacobian of φ_a and hence holomorphic on B. Then it follows from (10) that

$$\int_{R} J_{R} \varphi_{a}(z) d\mu(z) \le C$$

for all $a \in B$. Using the identity (1) we see that

$$\int_{B} \frac{d\mu(z)}{|1 - \langle z, a \rangle|^{2(n+1)}} \le C(1 - |a|^{2})^{-(n+1)}$$

for all $a \in B$. Therefore we have (9) with M = C.

Suppose (9) holds, and let $Q = Q_{\delta}(\eta)$ where $\delta > 0$ and $\eta \in S$. Since (9) with a = 0 shows that $\mu(B) \leq M$, we can suppose $\delta < 1/2$. Take $a = (1 - \delta)\eta$. Then

$$\int_{O} \left(\frac{1 - |a|^2}{|1 - \langle z, a \rangle|^2} \right)^{n+1} \quad d\mu(z) \le M.$$

On $Q = Q_{\delta}(\eta)$, we have

$$\begin{aligned} |1 - \langle z, a \rangle| &= |1 - \langle z, \eta \rangle + \delta \langle z, \eta \rangle| \\ &\leq |1 - \langle z, \eta \rangle| + \delta \\ &\leq 2\delta, \end{aligned}$$

and $1 - |a|^2 = 1 - (1 - \delta)^2 = 2\delta - \delta^2$. Therefore

$$\left(\frac{2\delta - \delta^2}{4\delta^2}\right)^{n+1} \int_Q d\mu(z) \le M,$$

so that

$$\mu(Q) \le M \left(\frac{2}{1-\delta}\right)^{n+1} \delta^{n+1}$$
$$= O(\delta^{n+1}).$$

Therefore μ is a Bergman-Carleson measure on B.

Proof of Main Theorem. Let f be a holomorphic function on B. By Theorem 2.4, $f \in \mathcal{B}(B)$ if and only if

$$\sup_{a \in B} \int_{B} \tilde{\triangle} |f|^{2}(z) J_{R} \varphi_{a}(z) d\nu(z) < \infty.$$

Using Lemma 2.3 and the identity (1), we see that

$$\begin{split} \int_{B} \tilde{\triangle} |f|^{2}(z) J_{R} \varphi_{a}(z) d\nu(z) \\ &= 4 \int_{B} \left(\frac{1 - |a|^{2}}{|1 - \langle z, a \rangle|^{2}} \right)^{n+1} d\mu(z), \end{split}$$

where $d\mu = (1 - |z|^2)(|\nabla f|^2 - |\mathcal{R}f|^2)d\nu$. It follows from Proposition 3.1 that $f \in \mathcal{B}(B)$ if and only if μ is a Bergman-Carleson measure on B. The proof is complete.

Acknowledgement. The authors wish to express their sincere thanks to the referee for the valuable comments.

References

- [CC] J. S. Choa and B. R. Choe, A Littlewood-Paley type identity and a character-action of BMOA, Complex Variables 17(1991), 15-23.
- [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103(1976), 611-635.
- [CW] J. Cima and W. Wogen, A Carleson measure theorem for the Bergman space on the ball, J. of Operator Theory 7(1982), 157-165.
- [G] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [R] W. Rudin, Function Theory in The Unit Ball of Cⁿ, Springer Verlag, New York, 1980.
- [T] R. M. Timoney, Bloch functions in several complex vairables, I, Bull. London Math. Soc. 12(1980), 241-267.
- [†]Department of Mathematics Education, Sung Kyun Kwan University, Jongro-gu, Seoul 110-745, Korea
- [‡]Department of Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Yusung-gu Gusung-dong, Taejun 305-702, Korea
- ††Department of Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Yusung-gu Gusung-dong, Taejun 305-702, Korea