THE ESSENTIAL POINT SPECTRUM OF A REGULAR OPERATOR

WOO YOUNG LEE, HONG YOUL LEE AND YOUNG MIN HAN

In [5] it was shown that if $T \in \mathcal{L}(X)$ is regular on a Banach space X, with finite dimensional intersection $T^{-1}(0) \cap T(X)$ and if $S \in \mathcal{L}(X)$ is invertible, commute with T and has sufficiently small norm then T - S is upper semi-Fredholm, and hence essentially one-one, in the sense that the null space of T - S is finite dimensional ([4] Theorem 2; [5] Theorem 2). In this note we extend this result to incomplete normed spaces.

Throughout this note suppose X and Y are normed spaces, write $\mathcal{L}(X,Y)$ for the set of all bounded linear operators from X to Y, and abbreviate $\mathcal{L}(X,X)$ to $\mathcal{L}(X)$. Recall ([2],[3]) that $T \in \mathcal{L}(X,Y)$ is said to be bounded below if there is k > 0 for which

$$||x|| \le k||Tx||$$
 for each $x \in X$,

is said to be open if there is k > 0 for which

$$y \in \{Tx : ||x|| \le k||y||\}$$
 for each $y \in Y$

and is said to be relatively open if its truncation $T^{\wedge}: X \longrightarrow T(X)$ is open. Thus bounded below is just relatively open one-one. The mapping $\operatorname{core}(T): X/T^{-1}(0) \longrightarrow \operatorname{cl} T(X)$ defined by setting

$$\operatorname{core}(T)(x+T^{-1}(0)) = Tx \in \operatorname{cl} T(X)$$
 for each $x \in X$

is always one-one and dense; when it happens to be invertible the operator T is called proper ([2] Definition 3.2.7). The operator $T \in \mathcal{L}(X,Y)$ is called regular if there is $T' \in \mathcal{L}(Y,X)$ for which

$$T = TT'T$$
.

Received December 7, 1991. Revised March 16, 1992.

It is known ([2] Theorem 3.8.2) that $T \in \mathcal{L}(X,Y)$ is regular if and only if T is proper and both $T^{-1}(0)$ and T(X) are complemented. Evidently

$$(0.1) T \text{ regular} \Longrightarrow T \text{ proper} \Longrightarrow T \text{ relatively open}$$

Relative openness can be tested with the (reduced) minimum modulus

$$\gamma(T) = \inf\{||Tx|| : \operatorname{dist}(x, T^{-1}(0)) \ge 1\} \quad \text{if } 0 \ne T \in \mathcal{L}(X, Y),$$

if T = 0 we may take $\gamma(T) = \infty$. Evidently

T relatively open
$$\iff \gamma(T) > 0$$
.

To prove the main result we need to two lemmas.

LEMMA 1. If $T \in \mathcal{L}(X,Y)$ is relatively open and if M is a subspace of X then the restriction of T to $M + T^{-1}(0)$ is relatively open.

Proof. If T_1 is the restriction of T to $M + T^{-1}(0)$ then $T_1^{-1}(0) = T^{-1}(0)$, and hence $0 < \gamma(T) \le \gamma(T_1)$, which says that T_1 is relatively open.

LEMMA 2. Suppose X is a normed space and $T \in \mathcal{L}(X)$. If A, B and D are closed subspaces of X for which

$$T(A) \cap D = \{0\}$$
 and dim $B = n < \infty$

then $\dim(T(A+B)\cap D) \leq n$.

Proof. Let $T(A) \cap D = \{0\}$ and dim $B = n < \infty$. Write

$$W = T(A + B) \cap D.$$

Suppose that $\{e_i : i \in \Gamma\}$ for some set Γ is a subset of W containing a (algebraic) basis for W. Then there are sets $\{a_i : i \in \Gamma\} \subseteq A$ and $\{b_i : i \in \Gamma\} \subseteq B$ for which

(2.1)
$$e_i = T(a_i + b_i)$$
 for each $i \in \Gamma$.

The Essential Point Spectrum of A Regular Operator

Suppose that $\{b_{j_1}, \dots, b_{j_k}\}$ is a basis for the span of the set $\{b_i : i \in \Gamma\}$, where j_1, \dots, j_k are in Γ ; by the hypothesis on B we have $k \leq n$. Now each $b_i(i \in \Gamma)$ has a unique representation of the form

$$b_i = \alpha_{i_1} b_{j_1} + \dots + \alpha_{i_k} b_{j_k}$$
 for some scalars $\alpha_{i_1}, \dots, \alpha_{i_k}$;

we thus have

$$(2.2) e_i = T(a_i) + \alpha_{i_1} T(b_{j_1}) + \dots + \alpha_{i_k} T(b_{j_k}) for each i \in \Gamma.$$

From (2.1) we also have

$$(2.3) \alpha_{i_1}e_{j_1} + \dots + \alpha_{i_k}e_{j_k} = T(\alpha_{i_1}a_{j_1} + \dots + \alpha_{i_k}a_{j_k}) + \alpha_{i_1}T(b_{j_1}) + \dots + \alpha_{i_k}T(b_{j_k}).$$

Thus, by (2.2) and (2.3), we have

$$(2.4) \alpha_{i_1}e_{j_1} + \dots + \alpha_{i_k}e_{j_k} - e_i = T(\alpha_{i_1}a_{j_1} + \dots + \alpha_{i_k}a_{j_k} - a_i).$$

Observe that the left-hand side of (2.4) is in D. Since, moreover, $T(A) \cap D = \{0\}$ it follows that

$$e_i = \alpha_{i_1} e_{j_1} + \cdots + \alpha_{i_k} e_{j_k}$$
 for each $i \in \Gamma$,

which says that $\{e_{j_1}, \dots, e_{j_k}\}$ is a subset of W containing a basis for W. We can therefore conclude that $\dim W \leq k \leq n$.

We are now ready to prove:

THEOREM 3. Suppose $T \in \mathcal{L}(X)$ is regular on a normed space X, with finite dimensional intersection $T^{-1}(0) \cap T(X)$. Then there exists $\epsilon > 0$ such that if $S \in \mathcal{L}(X)$ is invertible, commutes with T and $||S|| < \epsilon$ then the null space of T - S is finite dimensional.

Proof. Suppose $T = TT'T \in \mathcal{L}(X)$ is regular and $T^{-1}(0) \cap T(X)$ is finite dimensional. Then T'T(X) is the complementary subspace to $T^{-1}(0)$: that is, $X = T'T(X) \oplus T^{-1}(0)$. If T_1 is the restriction of T to T'T(X) then T_1 is bounded below. Thus there exists $\epsilon > 0$ such

that if $S \in \mathcal{L}(X)$ is invertible with ST = TS and $||S|| < \epsilon$ and if S_1 is the restriction of S to T'T(X) then $T_1 - S_1$ is also bounded below because the set of all bounded below operators forms an open set (cf. [1] Theorem V.1.6; [2] Theorem 3.3.3). Since $T_1^{-1}(T^{-1}(0) \cap T(X))$ is finite dimensional, we can find a closed subspace H of T'T(X) for which

(3.1)
$$H \oplus T_1^{-1}(T^{-1}(0) \cap T(X)) = T'T(X).$$

If T_2 is the restriction of T to H then T_2 is also bounded below. If T_3 is the restriction of T to $T(X) + T^{-1}(0)$ then, by Lemma 1, T_3 is relatively open. In particular, since by (3.1)

$$T(H) \oplus (T^{-1}(0) \cap T(X)) = T(X),$$

we have

$$T(H) \oplus T^{-1}(0) = T(X) + T^{-1}(0);$$

thus if T_4 is the restriction of T to T(H) then T_4 is bounded below. Further, the product T_4T_2 is well defined and bounded below ([2] Theorem 3.3.2). We now claim that

$$(3.2) (T_1 - S_1)(H) \cap T^{-1}(0) = \{0\}.$$

Indeed, if this is not so then we can find a sequence (x_n) in H with $||x_n|| = 1$ and a sequence $(S^{(n)})$ in $\mathcal{L}(X)$ with $||S^{(n)}|| \longrightarrow 0$ as $n \longrightarrow \infty$ for which

$$(T_1 - S_1^{(n)})(x_n) \in T^{-1}(0),$$

where $S_1^{(n)}$ is the restriction of $S^{(n)}$ to T'T(X), so that

$$T_4 T_2(x_n) = T T_1(x_n) = T S_1^{(n)}(x_n) \longrightarrow 0,$$

which contradicts the fact that T_4T_2 is bounded below. Therefore it follows from (3.1) and (3.2) that

$$M = (T_1 - S_1)(T'TX) \cap T^{-1}(0)$$

= $\{(T_1 - S_1)(H \oplus T_1^{-1}(T^{-1}(0) \cap TX))\} \cap T^{-1}(0)$

is finite dimensional, because the conditions of Lemma 2 are satisfied with $T_1 - S_1$ in place of T and H = A, $T_1^{-1}(T^{-1}(0) \cap T(X)) = B$, $T^{-1}(0) = D$. It therefore follows from the fact that dim $M < \infty$ and $ST^{-1}(0) = T^{-1}(0)$ that, for each $x = y + z \in X$ with $y \in T'TX$ and $z \in T^{-1}(0)$ we have

$$x \in (T-S)^{-1}(0) \Longrightarrow (T_1-S_1)(y)-S(z)=0$$

 $\Longrightarrow (T_1-S_1)(y) \in M \text{ and } S(z) \in M$
 $\Longrightarrow x \in F+G \text{ with } F=(T_1-S_1)^{-1}(M)$
and $G=S^{-1}(M)$,

where F + G must be finite dimensional; thus $(T - S)^{-1}(0)$ is finite dimensional.

For brevity, we shall write

$$\sigma^p_{ess}(T) = \{\lambda \in C : (T - \lambda I)^{-1}(0) \text{ is infinite dimensional}\}$$

for the essential point spectrum of $T \in \mathcal{L}(X)$.

We conclude with:

THEOREM 4. If $T \in \mathcal{L}(X)$ is regular with finite dimensional intersection $T^{-1}(0) \cap T(X)$ then we have

$$(4.1) 0 \notin acc \, \partial \sigma_{acc}^p(T),$$

where $\operatorname{acc} K$ denotes the accumulation points of $K \subseteq C$.

Proof. Applying Theorem 3 to T-S with $S=\lambda I$ and $0<|\lambda|<\delta$ for some δ gives that the dimension of $(T-\lambda I)^{-1}(0)$ is finite on a punctured neighborhood of 0.

In fact, (4.1) says that

$$0 \in \partial \sigma_{ess}^p(T) \Longrightarrow 0 \in iso \sigma_{ess}^p(T),$$

where iso K denotes the isolated points of $K \subseteq C$.

Woo Young Lee, Hong Youl Lee and Young Min Han

References

- 1. S.Goldberg Unbounded linear operators, McGraw-Hill, New York, 1966.
- 2. R.Harte Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
- W. Y. Lee Relatively open mappings, Proc. Amer. Math. Soc. 108(1)(1990), 93-94
- 4. _____, Boundaries of the spectra in $\mathcal{L}(X)$, Proc. Amer. Math. Soc. (to appear).
- 5. _____, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, SUNG KYUN KWAN UNIVERSITY, SUWON 440-746, KOREA