질소분위기에서 순간열처리에 의해 형성시킨 TiN/TiSi₂ Contact Barrier Layer의 특성

Characteristics of TiN/TiSi₂ Contact Barrier Layer by Rapid Thermal Anneal in N₂ Ambient

李 鐵 眞*・許 允 宗*・成 英 權** (Cheol-Jin Lee · Yoon-Jong Huh · Yung-Kwon Sung)

Abstract - The physical and electrical properties of TiN/TiSi₂ contact barrier were studied. The TiN/TiSi₂ system was formed by rapid thermal anneal in N₂ ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with N₂ gas to make a TiN layer at the surface and reacts with silicon to make a TiSi₂ layer at the interface respectively. It was found that the formation of TiN/TiSi₂ system depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSi₂ system occured above 600°C. Ti-rich TiN_x layer and Ti-rich TiSi_x layer were formed at 600°C. stable structure TiN layer and TiSi_x layer which has C₄₉ phase and C₅₄ phase were formed at 700°C. Both stable TiN layer and C₅₄ phase TiSi₂ layer were formed at 800°C. The thickness of TiN/TiSi₂ system was increased as the thickness of deposited Ti film increased.

Key Words: $TiN/TiSi_2$ system, competitive reaction, TiN and $TiSi_2$ stoichiometry, structure, RTA in N_2 ambient

1. Introduction

*正 會 員:高麗大 大學院 電氣工學科 博士課程 **正 會 員:高麗大 工大 電氣工學科 教授・工博

接受日字: 1992年 1月 6日 1次修正: 1992年 4月 15日 As the density of device increases, the contact size is reduced to submicron. The Al film which contains small amount of Si was used for VLSI metallization to restrain junction spike at Silicon substrate.[1] But silicon precipitation appeared at the small contact hole when Al-Si film was used for metallization. Si atoms in Al-Si film can migrate easily from line to contact hole and produce silicon nodules at the bottom of contact hole. [2] It results in increasing contact resistance and contact resistance nonuniformity. The barrier metal process was introduced to solve these problems.[3]

In this paper, physical and electrical properties of TiN/TiSi₂ system were studied in order to apply that structure as contact barrier layer. The TiN film and the TiSi₂ film were formed simultaneously by rapid thermal anneal in N₂ ambient.[4, 5] In this case, the Ti film reacts with N₂ gas to make a TiN layer at the surface and reacts with Si to make a TiSi₂ layer at the interface.[6] it was found that formation of TiN film was limited by a fast diffusion of silicon atom into Ti film to form Tisi film. Properties of TiN/TiSi₂ system were investigated at different RTA temperatures. Each films was analyzed by using ESCA, XRD, SEM, TEM, and four point probe resistivity mapping.

2. Experimental Method

P-type silicon wafers with (100) orientation and resistivity between 14 and 19 \mathcal{Q} -cm were used in this experiment. Wafers were dipped in 200: 1HF acid for 90 sec prior to loading in the sputter to remove native oxide on the surface. And then Ti films of 500 Å, 700 Å, 900 Å were deposited by sputter. To obtain TiN/TiSi₂ contact barrier layer, deposited Ti films were annealed by RTA at 600°C, 700°C, 800°C, 900°C in N₂ ambient for 30 sec. The sheet resistance was measured by fourpoint probe, the film structure was analyzed by XRD, the film composition by ESCA, the surface roughness by SEM, and the interface TEM.

3. Results and Discussion

High purity Ti film was deposited on the silicon

wafer and then $TiN/TiSi_2$ system was formed at the same time by RTA in N_2 ambient.

Fig. 1 shows the sheet resistance of $TiN/TiSi_2$ system after rapid thermal anneal in N_2 ambient for 30 sec. the sheet resistance was rapidly decreased according to increasing anneal temperature for 500 Å Ti film. But it was saturated above $800^{\circ}C$. This means that reaction is finished and resulting $TiN/TiSi_2$ layer has stable structure at $800^{\circ}C$. From this result, the sheet resistance of $TiN/TiSi_2$ system is shown to be dependant on

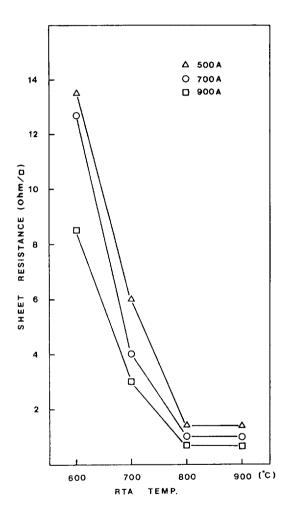


Fig. 1 Dependance of sheet resistance on the RTA temperature for TiN/TiSi₂ system in N₂ ambient for 30 sec. Thickness of deposited Ti is 500 Å, 700 Å, 900 Å respectively.

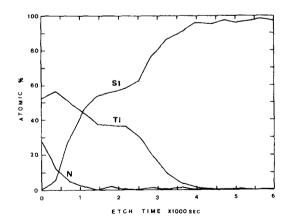



Fig. 2 Surface SEM micrograph of $TiN/TiSi_2$ system after RTA in N_2 mbient for 30sec. 700 Å Ti film was deposited.

anneal temperature. For 700 Å and 900 Å Ti film, dependacne of sheet resistance on the anneal temperature was similar to the case of 500 Å Ti film. By the way, the sheet resistance of TiN/TiSi 2 system decreased as Ti film thickness increased. It was caused by increasing thickness of TiN/TiSi 2 system. In Fig. 2, the surface SEM micrograph of TiN/TiSi2 system is shown according to anneal temperature. The surface roughness of TiN/TiSi2 system becomes severe as the anneal temperature increase. This means that reaction is rapidly accelerated according as the anneal temperature increase. But there is no difference about surface roughness between 800°C and 900°C, because the reaction rate is saturated above 800°C.

(c) 800℃ Anneal

Fig. 3 shows ESCA depth profile for $TiN/TiSi_2$ system which was formed at $600^{\circ}C$ in N_2 ambient for 30 sec after $700^{\circ}A$ Ti film was deposited on the

(d) 900°C Anneal

Fig. 3 ESCA depth profile for TiN/TiSi₂ system was formed by RTA at 600°C in N₂ ambient for 30 sec after 700 Å Ti film was deposited.

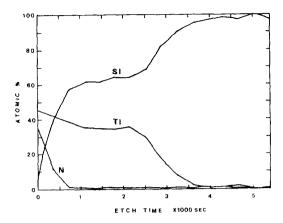


Fig. 4 ESCA depth profile for TiN/TiSi₂ system was formed by RTA at 700°C in N₂ ambient for 30 sec after 700 Å Ti film was deposited.

silicon substrate. It shows that Ti-rich $TiSi_x$ film was formed at the interface and Ti-rich TiN_x film was formed at the surface because the anneal temperature was not sufficient to silicidation and nitridation respectively. It also shows that thick TiN_x layer was formed at the surface. From this result, we can assert that competitive reaction of $TiN/TiSi_2$ system occurs at $600^{\circ}C$

Fig. 4 shows ESCA depth profile for TiN/TiSi₂ system which was formed at 700°C. It looks like that Ti-rich TiSi₂ film was formed at the interface but stable stoichiometric TiN film was formed at the surface. The thickness of TiSi₂ film was increased while TiN film was decreased. It reveals that silicidation is more active than nitridation at 700°C.

Fig. 5 shows ESCA depth profile for $TiN/TiSi_2$ system which was formed at $800\,^{\circ}$ C. It shows both $TiSi_2$ film and TiN film has stable composition. Thick $TiSi_2$ layer was formed at the interface while thin TiN layer was formed at the surface. This means the silicidation reaction was rapidly accelerated as anneal temperature increased.[7] Sun et al. announced that the silicidation reaction is faster as the reaction tem perature is higher, on the contrary the nitridation reaction is faster as the reaction temperature is lower.[8]

Fig. 6 shows X-ray diffraction peak for $TiN/TiSi_2$ system which was formed in N_2 ambient for

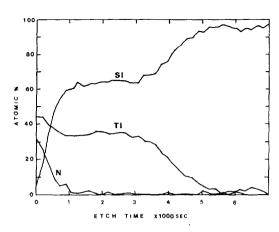


Fig. 5 ESCA depth profile for TiN/TiSi₂ system was formed by RTA at 800°C in N₂ ambient for 30 sec after 700 Å Ti film was deposited.

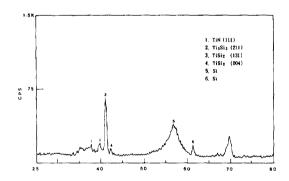


Fig. 6 X-ray diffraction peak for TiN/TiSi₂ system was formed by RTA at 600°C in N₂ ambient for 30sec.

30 sec at 600°C. The peak 1 represents TiN(111) and the peak 2, 3, 4 and 5 represent $Ti_5Si_3(211)$, $TiSi_2(131)$, $TiSi_2(040)$ and Si respectively. By the way, the struture of $TiSi_2(131)$ is C_{49} phase and $TiSi_2(040)$ is C_{54} phase. Peaks are small and profiles are not clear for peak 1 and peak 2 in this figure. It means that TiN is Ti-rich TiN_x film and $TiSi_2$ has un stable structure

Fig. 7 shows X-ray diffraction peak for TiN/TiSi₂ system which was formed at 700°C. In this figure, peak 1 represents TiN(111) and peak 2, 3, 4, 5 and 6 represent TiSi₂(311), TiSi₂(131), TiSi₂(004), TiSi₂(022) and TiSi₂(313) respectively. It

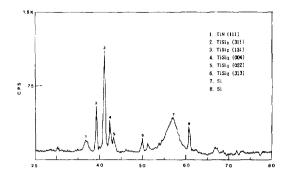


Fig. 7 X-ray diffraction peak for TiN/TiSi₂ system was formed by RTA at 700°C in N
₂ ambient for 30sec.

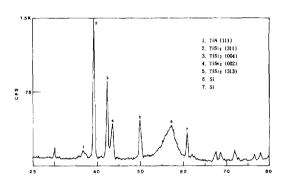


Fig. 8 X-ray diffraction peak for TiN/TiSi₂ system was formed by RTA at 800°C in N
₂ ambient for 30 sec.

was known $TiSi_2(131)$ has C_{49} phase but another $TiSi_2$ have C_{54} phase. From these results, we know that TiN film has stable structure but $TiSi_2$ film has unstable C_{49} phase and stable C_{54} phase at the same time.

Fig. 8 shows X-ray diffraction peak for TiN/TiSi₂ system which was formed at 800°C. The peak 1 represents TiN(111) and peak 2, 3, 4 and 5 represent all C₅₄ phase TiSi₂, moreover all peaks are clear. Therefore both TiN and TiSi₂ have stable structure film.[9] According to XRD analysis, the phase of TiSi₂ was changed from C₄₉ TiSi₂ to C₅₄ TiSi₂ as anneal temperature increased.

Fig. 9 shows cross-sectional TEM micrograph of $TiN/TiSi_2$ system at $700^{\circ}C$ in N_2 ambient for 30sec for $500 \, \text{Å}$ Ti film. This figure shows that thick $TiSi_2$ layer was formed at the interface while thin TiN layer was formed at the surface. It reveals

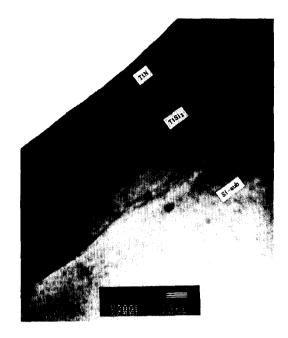


Fig. 9 Cross-sectional TEM micrograph for TiN/TiSi₂ system after RTA at 700°C in N₂ ambient for 30 sec. Thickness of deposited Ti was 500 Å.

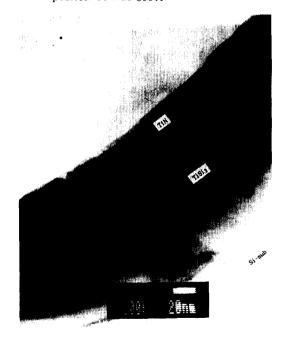


Fig. 10 Cross-sectional TEM micrograph for TiN/TiSi₂ system after RTA at 700°C in N₂ ambient for 30 sec. Thickness of deposited Ti was 700 Å

that silicidation reaction is rapidly advanced at 700°C annel. The thickness of TiN film was 220 Å and that of TiSi₂ film was 780 Å

Fig. 10 shows cross-sectional TEM micrograph of TiN/TiSi₂ system for 700 Å Ti film. This figure shows that 1080 Å TiSi₂ layer was formed at the interface but 270 Å TiN layer was formed at the surface. From this result, we can conclude that silicidation reaction is more promotive to nitridation reaction when anneal temperature is higher than 700°C

4. Conclusion

It was possible to make $TiN/TiSi_2$ contact barrier layer simultaneously by RTA in N_2 ambient. The formation of TiN layer was supposed to be limited by the silicide formation and the structure of resulting $TiN/TiSi_2$ system was dependant on RTA temperature.

At 600°C, Ti-rich TiN $_{\rm x}$ film was formed at the surface and Ti $_{\rm 5}Si_{\rm 3}$ film was formed at the interface.

At 700°C, TiN film which has stable structure and stoichiometry was formed at the surface but TiSi₂ film which was formed at the interface represented C₄₉ phase and C₅₄ phase.

At 800°C, TiN film which has stable structure and stoichiometry was formed at the surface and C_{54} phase TiSi₂ film was formed at the interface.

The phase of $TiSi_2$ film was changed from C_{49} phase to C_{54} phase as anneal temperature increased.

As the anneal temperature increased, the thickness of ${\rm TiSi_2}$ layer was increased while ${\rm TiN}$ layer was decreased.

The thickness of $TiN/TiSi_2$ system was increased as the thickness of deposited Ti film increased.

REFERENCES

- J.R. Black, "Electromigration failure modes in aluminum metallization for semiconductor devices," Proc. IEEE, Vol. 57, No. 9, pp. 1587~1594, Sept. 1969
- [2] H. Mori, "Resistance increase in small-area Si-doped Al-n-Si contacts," IEEE Trans. Electron Devices, Vol. ED-30, pp. 81~86, 1983
- [3] Takeo Maeda, Tako Nakayama and Shohei Shima, "A highly Reliable Interconnection for a BF₂⁺ Implanted Junction Utilizing a TiN/Ti Barrier Metal system," IEEE Elctron Device, Vol. ED 34, No. 3, p. 599, March. 1987
- [4] M. Delfino and M.H. Norcott, "Formation of TiN/TiSi₂/p+Si/n-Si by RTA silicon Implanted with Boron through Titanium," IEEE Electron Device Letters, Vol. EDL-6, No. 11, Nov. 1985
- [5] V.Q. Ho and D. Poulim, "Characterization of a Rapid Thermal Anneal TiN_xO_y/TiSi₂ contact Barrier," J. Vac. Sci. Technol. A5, p. 1396, 1987
- [6] B. Cohen and J. Nulman, "Low Temperature Rapid Thermal Formation TiN Barrier Layers," MRS symposium proceeding, Vol. 92, p. 171. 1987
- [7] Y.H. Ku, S.K. Lee and D.L. Kwong, "Self aligned TiN_xO_y/TiSi₂ contact formation," Thin Solid Films, p. 172, 1989
- [8] S.W. Sun, P.J. Tobin and R.L. Hance, "Effects of TiSi_x/TiN_x/Al contact metallization process on the shallow Junction Related properties," MRS symp. proc. Vol. 92, p 165. 1987
- [9] Y.H. Ku, E. Louis and D.L. Kwong, "Rapid thermal processing for self aligned silicide technology," MRS symp. proc., Vol. 92, p. 155, 1987