수조시험연구회(KTTC)

국제수조회의(International Towing Tank Contraction 처럼는 오래전부터 기호 및 용어위원회(Symbols & Terminology Group)를 구성하여 전기도 요를 작성해 왔다.

19차 ITTC('90.9. 스페인)에서 채택된 "ITTC 표준기호는 3가지 주제—General Mechanics, Ships in General, Special Craft—로 분류되어 있다. 본 내용에서는 이러한 표준기호를 나누어 소개하고자한다(참고문헌: "Standard Symbols and Terminology". 191H ITTC, Sept. 1990, Madrid, Spain).

SECTION 2 SHIPS IN GENERAL

2.2 RESISTANCE AND PROPULSION

2.2.1 Hull Resistance

Standard Symbol	Computer Symbol	Name of Concept	Definition of Explanation	SI Unit
CA	CA	Incremental resistance coe-	R _A	
		fficient for model ship correlation.	$\frac{1}{2}\rho V^2 S$	1
Caa	CAA	Air or wind resistance coefficient	$\frac{R_{AA}}{\frac{1}{2}\rho V_R^2 A_V}$	1
C_{D}	CD	Drag coefficient	$\frac{\mathrm{D}}{\frac{1}{2}\rho\mathrm{V}^2\mathrm{S}}$	1
$C_{\mathtt{F}}$	CF	Frictional resistance coefficient of a body	$\frac{R_{\rm F}}{\frac{1}{2}\rho{\rm V}^2{\rm S}}$	1
C_{f0}	CFO	Frictional resistance coefficient of a plate	$\frac{\mathrm{R_{FO}}}{\frac{1}{2}\rho\mathrm{V^2S}}$	1
$C_{\mathtt{P}}$	CP	Local pressure coefficient		1
$C_{\mathtt{PR}}$	CPR	Pressure resistance coefficient, including wave effect.		1

Standard	Computer	N. CO	Detail of Date of	OT II :
Symbol	Symbol	Name of Concept	Definition of Explanation	SI Unit
C _{PV}	CPV	Viscous pressure resistance coefficient	$\frac{R_{PV}}{\frac{1}{2}\rho V^2 S}$	1
C_{R}	CR	Residuary resistance coefficient	$\frac{\mathrm{R_R}}{\frac{1}{2}\rho\mathrm{V^2S}}$	1
Cs	CS	Spray resistance coefficient	$\frac{R_s}{\frac{1}{2}\rho V^2 S}$	1
$C_{\mathtt{T}}$	СТ	Total resistance coefficient	$\frac{R_{\rm T}}{\frac{1}{2}\rho{\rm V^2S}}$	1
$C_{\mathtt{TL}}$	CTL	Telfer's resistance coeffi- cient	$\frac{gRL}{dV^2}$	1
C_{TQ}	CTQ	Qualified resistance coefficient		
$C_{T\nabla}$	CTVOL	Resistance displacement	$\frac{R_{\rm T}}{\frac{1}{2}\rho {\sf V}^2 \bigtriangledown^{2/3}}$	1
Cv	CV	Total viscous resistance coefficient	$\frac{R_{\rm v}}{\frac{1}{2}\rho{\rm V}^2{\rm S}}$	1
Cw	CW	Wavemaking resistance coefficient	$\frac{R_{W}}{\frac{1}{2}\rhoV^2S}$	1
C_{WP}	CWP	Wave pattern resistance coefficient, by wave analysis		1
©	CIRCC	R.E. Froude's resistance coefficient	1000R	1
C,	CFUL	Local friction coefficient based on velocity at the edge of the boundary layer at $y=\delta$	$C_{r} = \frac{\tau_{w}}{\frac{1}{2}\rho U_{\delta}^{2}}$	1
d	DJWS	Jones wake strength		1
(F)	CIRCF	R.E. Froude's frictional resistance coefficient	$\frac{1000 R_F}{\triangle K^2}$	1
k	С3	Three dimensional form factor on flat plate friction	$\frac{C_{V}-C_{FO}}{C_{FO}}$	1
®	CIRCK	R.E. Froude's speed displacement coefficient	$\sqrt{4\pi}\cdot\mathrm{F}_{\scriptscriptstyle\mathrm{n} riangle}$	

Standard	Computer			<u> </u>
Symbol	Symbol	Name of Concept	Definition of Explanation	SI Unit
K _R	KR	Resistance coefficient corre-	$\frac{R}{\rho^2 D^4}$	1
		sponding to K Q, KQ, KT	$\rho^2 \mathrm{D}^4$	
R_{A}	RA	Model-ship correlation allo-	Incremental resistance to be add-	
	1	wance	ed to the smooth ship resistance	
			to complete the model-ship	
			prediction	
RAA	RAA	Air or wind resistance		N
Rap	RAP	Appendage resistance		N
RAR	RAR	Roughness resistance		N
m	BLCK	Blockage parameter	Maximum transverse area of	
:			model ship divided by tank cross	
			section area.	N
R _c	RC	Resistance corrected for	$\frac{(1+K)C_{FMC}+C_R}{(1+K)C_{FM}+C_R}R_{TM}$	N
		difference in temperature between resistance and self	(= · -= / = // · - //	
		-propulsion tests		
$R_{\rm F}$	RF	Frictional resistance of a	Where C _{FMC} is the frictional coe-	N
1CF	ICI	body.	fficient at the temperature of the	11
		body.	self propulsion test.	
R _{FO}	RFO	Frictional resistance of a	Due to fluid friction on the sur-	N
1-10		plate.	face of the body	
R _P	RP	Pressure resistance	Due to the normal stresses over	N
			the surface of a body	
R _{PV}	RPV	Viscous pressure resistance	Due to normal stress related to	N
			viscosity and turbulence	
R _R	RR	Residuary resistance	$R_T - R_F$ or $R_T - R_{FO}$	N
Rs	RS	Spray resistance	Due to generation of spray	N
R _T	RT	Total resistance	Total towed resistance	N
R _v	RV	total viscous resistance	$R_F + R_{PV}$	N
R _w	RW	Wavemaking resistance	Due to formation of surface	N
			waves.	_
RwB	RWB	Wavebreaking resistance	Associated with the break down	N
			of the bow wave.	
S _H	THL	Total head loss		m
△C _F	DELCF	Roughness allowance	(obsolete, see C _{A)}	1
V	V	Speed of the model of the		m∕s
	<u> </u>	ship		

Standard Symbol	Computer Symbol	Name of Concept	Definition of Explanation	SI Unit
V _R	VR	Wind velocity, relative		m/s
τw	LSF	Local skin friction		N/m²

2.2.2 Ship Performance

Standard Symbol	Computer Symbol	Name of Concept	Definition of Explanation	SI Unit
a	RAUG	Resistance augment fraction	$\frac{T-R_T}{R_T} + F_P$	1
C _{D♥}	CDVOL	Power — displacement coefficient	$\frac{\mathrm{P_{D}}}{\frac{1}{2}\rho\mathrm{V}^{3}\nabla^{2/3}}$	1
C _N	. CN	Trial correction for propeller rate of revolution at speed identity.	$\frac{n_{\mathrm{T}}}{n_{\mathrm{S}}}$	1
Спр	CNP	Trial correction for propeller rate of revolution at power identity.		1
СР	CP	Trial correction for deliver- ed power	$rac{ extstyle{P}_{ extstyle{DT}}}{ extstyle{P}_{ extstyle{DS}}}$	1
ΔC _{FC}	DELCFC	Ship model correlation fact- or with respect to △C _{FC} for- mula of ITTC 1978 method.		1
F _D	FD	Towing force applied to the model in a self propulsion test carried out at the ship propulsion point.		N
F _P	FP	Pull or towing force of a ship		N
Fpo	FPO	Pull during bollard test		N
K ₁	C1	Ship model correlation fact- or for propulsive efficiency.	<u>7рs</u> 7рм	1
K ₂	C2	Ship model correlation fact- or for propeller rate revol- ution	$\frac{\eta_{S}}{\eta_{M}}$	1
C _{ADM}	CADM	Admiralty coefficient	$\frac{\nabla^{2/3} V^3}{P_Z}$	
n	N	Frequency or commonly rate of revolution		Hz
Рв	PB	Brake power		W

Standard	Computer	Name of Concept	Definition or Explanation	St Unit
Symbol	Symbol	Traine or Concept	Definition of Explanation	ot omt
P_{D}	PD	Delivered power at propeller	$2\pi \mathrm{Qn}$	W
		Effective power		
P _E	PE		RV	W
Pı	PI	Indicated power	Determined from pressure measured by indicator	W
Ps	PS	Shaft power	Power measured on the shaft	W
P_{T}	PT	Thrust power	TVA	W
Q	Q	Torque	Corresponding to delivered power P _D	Nm
S	MSIN	Mean sinkage, dynamic	Mean variation of draft, fore ad aft, divided by length	1
t	TRIM	Trim, dynamic	Variation of the trim due to dynamic condition, divided by length	1
t	THDF	Thrust deduction fraction	$\frac{(T-R_T+F_P)}{T}$	1
W	WFT	Taylor wake fraction in general.	$\frac{(V-V_A)}{V}$	1
W	WFF	Froude wake fraction	$\frac{(V-V_A)}{V_A}$	1
WQ	WFTQ	Taylor wake fraction determined from torque identity.	Speed Va determined by a comparison between an openwater propeller test and a self propulsion test, K _Q having the same values in both tests.	1
W _T	WFTT	Taylor wake fraction determined from thrust identity.	Speed Va determined by a comparison between an openwater propeller test and a self propulsion test, K_T having the same value in both tests.	1 .
△W	DELWC	Ship-model correlation factor for wake fraction.	$W_{T, M} - W_{T, S}$	1
△Wc	DELWC	Ship-model correlation factor with respect to $W_{T,S}$ method formula of ITTC 1978 method.		1
X	XLO	Load fraction in power prediction.	$\frac{\eta_{D}P_{D}}{P_{E}}-1$	1
Zv	ZV	Sinkage of model or ship		m

Standard Symbol	Computer Symbol	Name of Concept	Definition or Explanation	St Unit
β	APSF	Appendage scale effect factor.	Ship appendage devided by model appendage resistance.	1
γ _R	GAMWR	Wind direction, relative.		1
ηв	ETAB	Propeller efficiency behind ship	$\frac{P_{T}}{P_{D}} = \frac{TV_{A}}{2\pi Qn}$	1
η _D	ETAD	Propulsive efficiency or quasi-propulsive coefficient.	$\frac{P_{E}}{P_{D}}$	1
η _G	ETAG	Gearing efficiency		1
ηн	ЕТАН	Hull efficiency	$\frac{(1-t)}{(1-w)}$	1
77м	ETAM	Mechanical efficiency	$\frac{P_s}{P_l}$ or $\frac{P_B}{P_l}$	1
ηR	ETAR	Relative rotative efficiency.	<u>ηs</u> ηο	1
ηs	ETAS	Shafting efficiency	$\frac{P_{D}}{P_{S}}$. 1
B _P	BP	Taylor's propeller coefficient base on delivered horse po- wer	$\frac{n P_d^{1/2}}{V_A^{21/2}}$	1
Вυ	BU	Taylor's propeller coefficient based on thrust horsepower	where n is revs/min, P_d in horsepower, V_A in knots(obsolete) $\frac{nP_T^{1/2}}{V_A^{21/2}}$ where n is revs/min, P_T in horsepower, V_A in knots(obsolete)	1
СР	CP	Power loading coefficient	$\frac{P_{D}}{\frac{1}{2}\rho V_{A}^{3}\frac{\pi D^{2}}{4}}$	1
C _Q ∗	CQS	Torque index	$\frac{Q}{\frac{1}{2}\rho(V_{A}^{2}+(0.7\pi nD)^{2})(\frac{\pi D}{4})}$	1
Сть	СТН	Thrust loading coefficient	$\frac{T}{\frac{1}{2}\rho V_{A}(\frac{\pi D^{2}}{4})}$	1
C _T *	CTHS	Thrust index	$\frac{T}{\frac{1}{2}\rho(V_{A}^{2}+(0.7\pi nD)^{2})(\frac{\pi D}{4})}$	1
J	ADVC	Advance coefficient or advance number of propeller	$\frac{V_{A}}{nD}$	1