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A Simple Extension of the Global Optimality Condition
for Lagrangean Relaxation

Seong-Cheol Cho*

Abstract,

A slight extension of the classical saddle point and the glcbal optimality condition has been discussed relative
to some algorithmic implications. It also involves an economi: interpretation which shows satisfying, rather than

optimizing, decision making behavior under bounded rationality.

1. Introduction

Since the pioneering paper of Everett [2] the Lagrangean relaxation has been widely used to
optimize various mathematical programming problems with complicationg side constraints. The
well known global optimality condition (Shapiro [7, p.144], Geoffrion [4]) has provided a theo-
retical foundation. However it has been seldom observed in practice, mainly, due to the exis-
tence of positive duality gap in many real problems. This is particularly true of almost all dis-
crete optimization problems to which the Lagrangean technique has been applied (Geoffrion
[5], Fisher [3]) with salient success.

The main emphasis of studies on the problem of cuality gap, till now, has been put on remov-
ing the duality gap by using various nonlinear pricing methods instead of multipliers, which has
been well summarized by Tind and Wolsey [10]. However it should be noted that nonlinear
pricing itself is hard to handle for practical purposes and that the ordinary Lagrangean relaxa-
tion is still being popularly used even without proper theoretical foundation. It has been taken
for granted implicitly that no useful result about optimality can be derived under positive duali-
ty gap.

This paper takes a different view. The duality gup is allowed, and a simple extension of the

global optimality condition has been presented using ordinary Lagrangean function. It is in fact
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a direct extension of the classical saddle point and optimality condition. It suggests a new in-
sight on the use of Lagrangean relaxation, and justifies theoretically the frequently used heu-
ristic procedures of manipulating a good feasible solution of the original problem from an opti-
mal solution of the Lagrangean subproblem.

The associated economic interpretation shows satisfying (Simon [8]), rather than optimizing,

decision making behaviors.

2. e-saddle point

Let X and Y be any nonempty sets and L(x.y) be a real valued function on XX Y.

Definition 1. Let &, €1, €; be nonnegative numbers with e,+&:=¢€. A pair (x, )V EXX Yisan
e-saddle point for L(x, y) if

Lix, D—e:<L(x, ) <(x, ) +e VzEX, yEY.

The conventional saddle point corresponds to a zero-saddle point in the definition above. The
following economic interpretation is possible for small values of & : Consider a two person zero—
sum game where X, Y denote the set of strategies of Player 1 and Player 2 respectively. Let
L(x, y) be the payoff function of Player 1. Then an e-saddle point is a pair of satisfactory, rath-
er than optimal, strategies of the two players. It can be a stable solution of the game if the play-

ers are not completely aware of the strategies and the payoff structure.

Theorem 1. Define M(y) = max rex L(x, y) and m(x) =min ,ey L(x, ).
Then(x, ) EXx Y is an g-saddle point if and only if M(3)—m(x)<e.

Proof. Since M(y)—m(x) = (M(»)—L(x, ¥ -+ (L(x, y)—m(x)), the result is clear. I}

Unlike the conventional saddle point, the e-saddle point exists for any function L(x, ») for a
proper value of & without any regularity conditions. It could be found by (approximately) opti-

mizing M(y) and m(x) respectively, probably with known algorithms.

3. Global e-optimality condition

Consider the following mathematical programming problem
(P) max{f(x) | g{x) <0, i=1, -, m, xEX}

where X is a nonempty subset of R"(the Euclidean n-dimensional space), and Ax), g(x) are
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real valued functions on X.
Suppose(P) can be solved easily with known algorithms without the m constraints g;(x) <0.

Define
Lix, v)=f(x)—>2 i;"l v g{x) on XX Y, where Y={y&R" | y=0}.

A natural Lagrangean relaxation [5] with a multiplier vector y&€Y is
(R,) M(y) =ma;(L(x, ».
The Lagrangean dual problem is

(D) minM(y).

Y

Definition 2. Let €, €1, & be nonnegative numbers with e +e.=¢. A pair (z, EXXY satis-

fies the global e-optimality condition if

(i) x is an e~optimal solution of (Ry), i.e., L( x, y) =M(y)—e,,
(i) g x) <0, i=1, -, m, and

(i) 2 ,:, yw(—gilx))<e
The above definition is a direct extension of the global optimality condition which corresponds
to the specific instance of €=0.
Theorem 2. Suppose x is feasible to (P) and »=Y. Then (x, y) satisfies the global &-
optimality condition if and only if M( y)—f(x)<e.
Poof. Since M( 3)—f(x)=M(y)—L(x, ¥)+L( % y)—f 2)=M(y)—L(x,y)—2 ,:1 ¥
gi( x), the result is clear.

Corollary 2.1. A pair ( x, y)EXX Y is an e-saddle point for L(x, y) if and only if it satisfies
the global e-optimality condition.

f(x), if x is feasible to (P)

Proof. Since m( x )=min L(x, y) Z{ )
ey —co, otherwise,

Theorems 1 and 2 directly leads to the above result. Il
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Many practical algorithms using Lagrangean relaxation terminate when the gap between the
upper bound and the lower bound of the optimal value has been within some predetermined
error bound . In this light, Theorem 2 has revealed that the global ¢-optimality condition
actually should be satisfied for many usual algorithms to terminate.

Of course the usefulness of the global e-optimality condition will increase as the Lagrangean
duality gap decreases. Although we can in general narrow down the duality gap by reducing
the number of relaxed constraints, this will restrict the availability of easy exact algorithms for
solving the Lagrangean subproblems. However we may benefit from using some easy heuristic
algorithms, instead of exact ones, since an approximate optimal solution of (P) will be also
found as an approximate optimal solution of (Rj) if only y is (near) optimal to (D). It also
should be noted that an g-optimal solution x of (Rj produces an e-subgradient (Dem’yanov
and Vasil'ev [1, p.77], —g(x), of the convex function M(y) at y, which can be useful to mini-
mize M(y).

The global e-optimality condition also gives a theoretical justification to many successful heu-
ristic attempts, frequently used hitherto, to obtain a good feasible solution of (P) by slightly
modifying an optimal solution of a Lagrangean subproblem. In particular, once we have ob-
tained an (opproximate) optimal multiplier vector y of (D), Theorem 2 recommends us to ex-
amine as many approximate optimal solutions of (R3), beyond a single optimal one, as we can
with ease. This additional effort might reduce the necessity of entering into tedious branch and

bounds, by detecting out a satisfactory solution of (P).

4. Economic interpretation in linear programming with mixed variables

Consider the following problem to maximize an economic criterion cx,
(P) max{cx | Ax<b, x€ X}

where x is a vector of levels of n activities, Ax<b is the set of constraints confining the
availability of m resources for the activities. Let X={x€R" | x=0, x;, :-+, x; are integers. (k<
n)}. Note that (P) becomes a pure integer program if k=n, and simply a linear program if k=
0. Define L(x, ¥) = cx+ y(b— Ax) on Xx Y, where Y={y=R" | y=0}. The following result is di-

rect from Definition 2.

Theorem 3. A pair (x, y )€ XX Y satisifes the global e-optimality condition if and only if
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(i) ec—yA <O

(i) (PA—c)x < e
(i) Ax <b

v) y(b—Ax) < &

for some nonnegative numbers €, e; with e;+¢ex=e.

Suppose x is the vector of chosen levels of activiiies and y is the vector of imputed prices of
resources. For small values of e, the following interpretations come from Theorem 3.
(i) The prices give no net profit for any activity.
(i) If net loss arises from an activity, we either give up the activity, or do it no greater than a
reasonable level.
(i) The chosen set of activities is feasible.
(v) We make use of either full, or a great majority of valuable resources. The unused resources

have little value, if any.

The above interpretation represents a satisfying 8], not necessarily optimizing, condition for
decision making. This better reflects real decision making behaviors under bounded rationality
(Simon [9, p.61]), than the well known similar interpretation in linear programming

(Koopmans [6, p.2161) which described the optimal behavior.
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