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Notes on Reducing Mixed Integer Knapsack Problems

Hochang Lee*

Abstract

We consider 0-1 mixed integer knapsack problems. They turn out to be no more difficult to
solve than the corresponding 0-1 pure integer knapsack problems with efficient pseudopolynomial

time algorithms.

1. Introduction

Consider the following two versions of the 0-1 mixed integer knapsack problem,

(P0) Max l_ezla,-x,-+by
s.t. ieZ:Icix,- +y< K
x€{0,1},Viel
y >0

(QO)MiniEZ]d,-x,-+ey
s.t. l;f,-x,+y2L
xel0, 1l vieJ
yz0

where all coeffcients are positive. Without loss of generality, we assume that the x/s are ar-
ranged in nonincreasing order of ai/ci V¢ € I and the xs are assumed to be arranged in
nondecreasing order of di/fi Vj € J. It is trivial to see that the 0-1 mixed integer knapsack
problem with multiple continuous variables reduces to one with a single continuous variable,

0-1 mixed integer knapsack problems are easily seen as substructres in a monolithic pro-
duction /manufacturing problem. A typical example of(PQ) is the investment problem where a
fraction of a certain investment option is allowed within a budget constraint. As an example of

(Q0), we can consider the minimum cost packing problem where a fraction of a certain item is
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allowed to be packed subject to a minimum required container size. It is well known that mixed
integer programs are generally harder to solve than pure integer programs.[3] In this paper, we
will show that 0-1 mixed integer knapsack problems are not necessarily harder to solve than the
corresponding 0-1 pure integer knapsack problems with efficient pseudopolynomial time algo-

rithms, [2]

2. Notation

Given an optimization problem (P), OV(P), OS(P) and FR(P) dencte an optimal value, a set

of optimal solutions and feasible region of (P) respectively., A«<-B means assign B to A.

3. Reducing (P0) and (Q0)

The followings are trivial:

Observation 1. (x % y) € OS(P0) satisfiesx!= 0 Vie I*
Observation 2. (x*% y) € 0S(Q0) satisfiesx}= 0 Vj€ J*

where the subsets of I and J are given below

IS ={i€l|a,’/c,'sb} I> ={i€[la;/c;>b}
J:={elldiff=e& J =fieJld/f,<e

By Observation 1 and 2, (P0) and (Q0) reduce to (P1) and (Q1) respectively:

(P1)Max Y ax: + by

ier
st. Yexity< K
ier

x €1{0,1},Viel”
y=>0

QD Min ¥ dx;, + ey
jeJ*
st. Y fx+y=L
j€r

xJE{O,l},VjeJ<
y=0
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4. Solving (P1) and (Q1)

Lemma 1. (x* y) € OS(PI) is obtained by solving one 0-1 pure integer knapsack problem.
Proof. For fixed x, (P1) reduces to the following linear programming problem (LP):

(LP) Max by
st. y<K - Y cx
ier

y=>0

Dual of (LP) is
(DP) Minu(K — ¥ cx)
iel”
st. u=b
FR(DP) has one extreme point, b, and one extreme ray with positive direction. Benders' refo-

rmulation[1] of (P1) is given by

(P2) Max Y ax;+ (K- cx) = bK + (X (a; — bc) x:

ier el i€l
st. Yexi<K
el

x:€{0, 1}, Viel© B

Lemma 2. (x*3y" € 0S(Q1) is obtained by solving at most two 0-1 pure integer knapsack
problems.

Proof. For fixed x, (Q1) reduces to the following linear programming problem (L@):

(LQ) Min ey
st. y2L - % fx
i€y
y >0

Dual of (LQ) is
(DQ) Max (L — ¥ fix)

jer

st. v<e
v=20
FR(DQ) has two extreme points, 0 and e. Benders’ reformulation of (@1) is given by
(Q2) MinlY dx; + max{0,elL— % fx)})
jel” jel”
st. x€{0, 1, Vie]©
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and OV(Q2) = min{OV(Q21), OV(Q22)}, where

jer
jel”

xie {0,1}’ Vje]<

(Q22) Max ¥ (di—ef)x; + el

jeJ*

jeJ<
% €{0,1}, VieJ<
0S(Q1) can be obtained by solving at most two 0-1 pure knapsack problems, (Q21) and (Q22).
If the optimal solution of either (Q21) or (Q22) satisfies the corresponding knapsack constraint
as an equality, there is no need to solve the other knapsack problem. If OV(Q21) > 0OV(Q22),
y'=L—=Y ., fx Otherwise,y'=0. N

5. Examples
We illustrate the solution method with two numerical examples.

5.1 Maximization Problem

(P0) Max 25x1+5x2430xs+7x+12x:+10y
sk, 10x1+3x:4-20x3+8x+15%5+10y< 25
x € {0,1}, 7=1,2,3,4,5
y=>0

(PO) reduces to (P1):
(P1) Max 25x1+5x2+30x3+10y
s.t. 10x1+3x2+20x3+10y< 25
x € {0,1}, =123
y=0

(P2) is given by
(P2) Max 15x+2x2+10x:+25
st.  10m+3x+20x3<25
x € {0.1}, =123
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By solving (P2), we obtain the OS(P0): (¥, ¥, ¥, x¥, x¥)=(1,1,0,0,0,1.2).

5.2 Minimization Problem

(Q0) Min
s.t.

(Q0) reduces to (Q1):
@D Min

s.t.

(@21) and (Q21) are given by
(Q21) Min
s.t.

(Q22) Min
s.t.

1021+ 3022 +5x5+18x4+28x5+20y
10x1+20x2+3x3+6x+7x5+10y 2 25
v € {0,1}, i=1,2,3,4,5

y=0

10x1+30x2+5x3+20y
102:+2022+3xs+10y > 25
x € {0,1}, =1,2,3
y=0

10x14-30x2+5%3
10x1+20x2+3x3 2 25
x € {01}, =123
—10x1— 1022 — x5+50
1001 +20x2+3x3< 25
% € {01}, i=1,2,3

Since OV (Q21)=40>39=0V(Q22) and (Q22) has two alternative optimal solutions, we obtain

the OS(QO) : (xf, x7, x¥, xf, x¥, ¥*

6. Conclusion

)=(1,0,1,0,0,1.2) or (0,1,1,0,0,0.2).

Solving any 0-1 mixed integer knapsack or anti-knapsack problem reduces to solving at most

two generally smaller pure 0-1 knapsack or anti-knapsack problems with effcient pseudopolyno-

mial time algorithms,
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