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Abstract

Even though nonhomogeneous Markov Decision Processes subsume homogeneous Markov De-
cision Processes and are more practical in the real world, there are not many results for them. In
this paper we address the nonhomogeneous Markov .Decision Process with objective to maximize
average reward. By extending works of Ross [17]in the homogeneous case adopting the result of
Bean and Smith [3] for the discounted deterministic problem, we first transform the original
problem into the discounted nonhomogeneous Markov Decision Process. Then, secondly, we trans-
form into the discounted deterministic problem. This approach not only shows the
interrelationships between wvarious problems but also attacks the solution method of the

undiscounted nonhomogeneous Markov Decision Process.

1. Introduction

Many problems can be modelled as Markov Decision Processes, but are not necessarily homo-
geneous. That is, rewards and transitions are time dependent. Examples include R&D modelling
[15], capacity expansion [8, 14], equipment replacement [13], and inventory control [20]. In
some of these applications average reward criteria are more appropriate than descounting,

In this paper we address the nonhomogeneous Markov Decision Process with objective to
maximize average reward. This analysis is complicated by the facts that nonhomogeneous
problems do not have average value functions and that the average reward criteria is tail driven
(see Appendix). That is, whatever is done during any finite leading strategy segment is irrel-
evant (a strategy is an infinite sequence of state dependent decisions). In homogeneous

problems, under certain ergodic conditions, this is not a concern since the tail is an exact
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replica of the original problem, Such is not the case in nonhomogeneous problems. To further
complicate the issue, in nonhomogeneous problems we are often .interested only in a leading
strategy segment since only it must be implemented now. Nonetheless, under certain ergodic
conditions, some average optimal strategies can be found and shown to make sense. This paper
will establish these conditions, substantiate the reasonability of the solutions and suggest
approaches for finding them. Our goal in this paper is to establish the mathematical framework
necessary to create algorithms to solve these problems,

The traditional approach to a nonhomogeneous problem transforms it to a homogeneous prob-
lem. Standard transformations are available, but result in a homogeneous problem lacking the
necessary ergodic conditions. Even if each transition in the nonhomogeneous problem is well be-
haved, the homogeneous equivalent is not. Section 4 includes an example.

In this paper we consider two approaches to the nonhomogeneous Markov Deciosion Process
with average reward criteria : an improved transformation that preserves necessary conditions,
and a direct approach based on forecast horizons. The former extends work of Ross [17] and
Alden and Smith [1]. The latter extends work of Hopp, Bean and Smith [11] and Bean, Smith
and Lasserre [2].

Section 2 introduces the notation and definitions necessary for our discussion. In Section 3,
we define weak ergodicity, present three ergodic coefficients, and describe the relationship be-
tween these coefficients. Section 4 discusses transformations using the Doeblin coefficient for
undiscounted non homogeneous Markov Decision Processes, Section 6 summarizes this paper.

Finally, Appendix shows the abnormal behavior of average value function.

2. Notation and Definitions

We consider the undiscounted nonhomogeneous Markov Decision Processes, and generalize the
notation of Bean, Smith and Lasserre [2].

We observe a process at time points £=0, 1,-- to be in one of a countable number of states
i=1, 2,--The decision maker chooses a policy in stage k, x,€ X, by selecting actions, x,’;, from
finite sets, X}t for states 7=1, 2,---. An infinite horizon feasible strategy, x, is an infinite se-
quence of policies,

A finite horizon strategy, x(k, N), is a sequence of policies from time £ through time N-—1.
Even though a finite horizon feasible strategy consists of finite number of policies, we assume
that x(k, N)€ X by allocating arbitrary policies before time £ and after time N. Also, if k=0,

denote x(N) =x(0, N). We use an asterisk to represent the optimality of an action, policy or



F17%  F2%Equivalent Transformations of Undiscounted Nonhomogeneous Markov Decision Processes 133

strategy in the minimum class to which it belongs. For example, x*(N) is an N —horizon opti-
mal strategy.
The set of all feasible strategies is denoted by X which is compact in the metric topology

introduced in Bean, Smith and Lasserre [2], where the metric, p, is defined,

plx, %)= i 2= % @ (x, ¥) for all x, x € X,
k=0
and
0, if x,==%
o, (x, )= kT
1, otherwise,

Using this metric we define a concept of optimality that will be cited frequently in this work.

Definition. Under this topology, an infinite horixpn strategy, , is called algorithmically opti-

mal if, for some sequence of integers, {N,,}m—0,

(N, )—% in p—metric as m—0,

If we take action x/’t in state 7 at time £, then, independent of past actions, two things hap-

pen :

1. we gain a reward 7(x}).
2. we transit to the states, j, at time £-+1 according to the probability transition matrix
{P‘Z(x;’;)}.

Note that both the rewards and transition probabilities may be stage dependent.

The basis for many optimality criteria is the finite reward function. Given an infinite horizon
strategy, x, and a one period discount factor, 0=a=<1, the expected net present value of the
total rewards from time £ through to time N, N>k, at the beginning of stage k, is written
Vi(x ; N).

Note that in evaluating V(x; N), the first k£ policies of x are ignored. Then V(x; N) maps
into R® with the ##* element given by V,f(x; N) which represents the expected net present
profit from state 7 in stage & through stage N under strategy x. Note that Vi(x*(N); N)=Vi(»*
(k, N); N) for all k=0, 1,---, by the principle of optimality.

In general, we are interested in the value function from stage 0 onward, which is written :

Vo (x; )= o THDRx,),
where » "

TH%) =[1Pdxs), n>120

Ty x) =1
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Throughout the paper we make the following assumptions :
Assumptions

1. The state space, I, is countable.

2. The number of decisions available in each state is finite for all states, i.e.,
| Xi| <o, for all ¢ and £.

3. Rewards are uniformly bounded for all states and decisions, i.e., f(_)r some R< 0,

#<R , for all i€l and K€ X}

In the infinite horizon problem, with discount factor «, 0<«<1, define x* to be an a-optimal

strategy if

Vlx*)—VdAx) 20, for all xe X,
where
Vo(Jc)Zl},_.mcn Volx; N)

This definition is valid if the limits exist. However, the primary interest of this paper is the
case a=1. In this case it is possible that V (x; N) diverges with N. Then we define x* to be
an average optimal strategy if

.. Vox*; N .. Volx; N
Jim mf"—(N~—)— mmf—”%—l 20, for all x€X.

Assumption 3 implies that this lim inf always exists.

3. Weak Ergodicity

In this section, we formally define weak ergodicity and the corresponding ergodic
coefficients,
Let
P x) =PoPu(%4) Pa+1 (xn+1)-+- Pn-1(xn-1),

where # is a starting vector (initial distribution). Similarly,
2u(%) =20Pn(2n) Put1 (xtn+1)++ Pu-1(2n-1),

where 2 is a starting vector (initial distribution). If P=(p) is a vector, we define the norm
of @ to be
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01«

12l =% Ip;l.

-
il‘

If P=(ps) is a square matrix, we define the norm of P to be
IPl =spp X Ipj |.
=
Definition. A nonhomogeneous Markov decision process is called weakly ergodic if, for all #,

lim sup [|Pxn(x) — 2un(x)|=0 for all x€ X,
N—x .20

and is called strongly ergodic if there exists a vector g(x)=(g{x),g4x),--), with llg(x)|=1 and
g{x) 20 for all i=1, 2,---such that for all =

},il’l'alo sup I2un(x) —q(2) =0 for all x€ X,

That is, a nonhomogeneous Markov Decision Process is weakly ergodic if and only if it
eventually loses the memory of the starting vector and initial probability distributions. For a
problem to be strongly ergodic, the process not only must lose memory, but also converge to a
fixed probability vector,

It is difficult to determine if any specific problem satisfies this definition. To facilitate the
identification of weak (strong) ergodicity, we define several ergodic coefficients : Ross’ coef-

ficient {(ao), the Doeblin coefficient (#), and the Hajnal coefficient (y).
Definition. Ergodic Coefficients :

o Ross’ coefficient :

@=Sup Sup a (P(xe)),
where ad Pl(xd))=1-sup; infi P¥ (xx).
e Doeblin coefficient :
P=opp 2 P (=)
where f(P{x))=1— X infi P{ (x),
e Hajnal coefficient :
y=sup xsklél?“?(Pk (x4)),

where y(Pixx))=1—infa,» ilmin(P‘/}" (x0),PZ (x0)).

We call a0 Ross’ coefficient since the homogeneous version was used in Ross [17] to show the

existence of a stationary optimal strategy., For the nonhomogeneous case, Hopp, Bean,
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and Smith [11] used this coefficient to prove the average optimality of an algorithmically opti-
mal strategy. Alden and Smith [1] used the Doeblin coefficient to show that the error between
the rolling horizon strategy and the (average) optimal strategy goes zero when the Doeblin co-
efficient, B, is less than 1. The Hajnal coefficient was first introduced by Dobrushin [6], fol-
lowed by several papers and books such as Hajnal [9], Paz [16]. For applications of this coef-
ficient, see Hopp [10].

Now, we state some well known results on identification of weak ergodicity through ergodic

coefficients.
Lemma 1. a) (Seneta [19]) If P and Q are stochastic matrices,
WQP) £y(Q)y(P).

b) (Isacson and Madsen [12]) A nomhomogeneous Markov decision process is

weakly ergodic if and only if, for all n, y(TX(x))—0 as N—o0 for any feasible strategy x.

¢ (from a) and b)) A nomhomogeneous Markov Decision Process is weakly
ergodic if y<l.

The following lemma describes the relationship between the coefficients. Proofs are straight-

forward and omitted.
Lemma 2. a) a<l #f and only if B<1.
b) a=p.
¢) If B<1 then y<1.
d) if a<l, if p<1, or if y<l.

Even though we know from Lemma 2 that the Hajnal condition (y<1) is the weakest of the
three, we will use the Doeblin coefficient to show many results in this Section. The advantage
of the Doeblin coefficient is that we can transform the undiscounted Markov decision process
into an equivalent discounted Markov decision process exploiting f as a real discount factor.
We can also transform using as2f, the Doeblin coefficient may lead to faster convergence

when we solve the transformed discounted problem.
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4. Transformation into Equivalent problems

The traditional transformation for a nonhomogeneous problem to a homogeneous problem
defines states in the homogeneous problem as a (time, state) pair. If the original problem has
countable states, then so does the resultant problem., However, even if the nonhomogeneous
problem satisfies any of the conditions for weak ergodicity, the transformed problem may not,
For example, begin with a fimth state problem where transitions in an even numbered stage
occur with transition probability matrix P1 and in odd numbered stages follow P2. An

equivalent homogeneous problem would have transition matrix

¢ P1 0 0
P= ¢ 0 P2 0

Since each of the columns of P contains predominantly zeroes, none of the conditions for
reasonable behavior, of which we are aware, are satisfied (see Federgruen and Tijms [7]).

We now present an improved transformation that preserves the Doeblin condition for weak
ergodicity.

We define two Markov Decision Processes using the Doeblin coefficient :

PN 1 The undiscounted nonhomogeneous Markov decision process with probaility transition
matrix Pd(x:), reward Ri(xs), value function Vi - ), average value function A« - ), infi-
nite horizon average optimal solution x* and finite horizon optimal strategy from time £
through time N, x* (£, N).

Alden and Smith [1] proposed the following theorem.

Theorem 1. (Alden and Smith [1]) Every ome step probability transition matrix can be
expressed as a conmvex combination of another stochastic matrix and a stable matrix, using the
evgodic coefficient B as a multiplier. That is, for all k and all xr€ X,

Pk(Xk) = ﬂpk(xk) + ( 1— ﬂ) Lk,

where Pdxy) is a stochastic matvix, L« is a stable matrix (a stochastic matvix with identical
rows) independent of x+, and 0<B=1.

Solving for Pix«) we have

Pux)= E (X")—B(I_B)L’f , for each k, and for each xx.
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Based on the above theorem, define another class of nonhomogeneous Markov Decision
Processes, PN2.

PN2 The pB—discounted nonhomogeneous Markov decision process with probability transition
matrix Pi(x:), reward Ri(x:), value function Vi -), infinite horizon optimal strategy x*

and finite horizon optimal strategy from time % through time N, x*(k,N).

This section will demonstrate solution methodologies for the undisconted nonhomogeneous
Markov Decision Process, PN1. The Doeblin coefficient will also be used to show solution
procedures for PN1 by transformations. Throughout this section the Assumptions of Section 2
will be in effect.

As defined earlier, an infinite horizon optimal strategy is called an algorithmically optimal if it
is the cluster (accumulation) point of the finite horizon optimal strategies. Bean, Smith and
Lasserre [2] show that an algorithmically optimal strategy exists for the undiscounted
nonhomogeneous Markov Decision Process, and that when the problem is weakly ergodic, an
algorithmically optimal solution is average optimal. With the above fact and definition in mind,
we transform the original undiscounted nonhomogeneous Markov Decision Process, PN1 into the
pB—discounted nonhomogeneous Markov Decision Process, PN2, using the ergodic coefficient B.
This generalizes an approach by Ross [17] since it considers nonhomogeneous problems and uses
the slightly more effcient Doeblin coefficient, The following lemma shows that the finite horizon
optimal value of PN1 can be obtained from PN2 and the set of finite optimal solutions of PN1
1s equal to that of PN2.

Lemma 3. Under the condition that B<1, we can represent the finite horizon optimal value of
PN1 as a function of the finite horizon optimal value of PN2, i.c.,

- N =z .
Vilx"(k,N);N) =V N);N) +(1-p) T ¥ LV (UN)N),
for all iel, k=0, -, N—1,

Moreover, the finite optimal strategy set of PN1 is equivalent to that of PN2, i.e.,
x*k,N)=x*k,N), for all k=1, --- N—1.

Proof. First, for convenience, let VA N)represent the optimal expected total rewards gained
from stage k through N starting at state 7 in stage £, i.e., VAN) =Vix*N);N).

We will prove the result by induction on k. For k=N—1,

Vi N)=max{ri(xi)}=V¥-(N), thus #(N—1,N)=xN—-1,N).
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Now assume that the result holds from period £+1 to period N—1 for 12N -2, Then,

I

Vi (N) = max {r} (x) + ﬂi B Viewy (WD}
= max {r; (x}) + ﬁZ( 2t (x},—(; — A Li
%

= max {7} (x) + zpk () Vs (N)—(1 — B) i Li Vi, (N}

k

= max {Tk (x,,) + Zpk (Xk) V k+1 (N)— (1- B) _‘2,:

x?

k

= max {ri (x) + ;pf D Vi, (N} = (1-p

= Vi(N) = (1—p) é“jzle(N),

) Vis (N)}

’mVI (N)) - (1 - ﬂ) ZLVVI:+1(N)}

zi: LiV.(N)

which is the desired result, Also from the second to last equation, we can see the equivalence

of the solution set, since the last term of that equation is independent of #. o

The above lemma is interesting since both the finite horizon optimal solution and value of an
original undiscounted nonhomogeneous Markov Decision Process problem, PN1, can be obtained

by solving the f—discounted nonhomogeneous Markov Decision Process problem, PN2.

Now, we prove the main theorem of this section which shows the equivalence between the

average optimal strategies of PN1, and PN2.

Theorem 2. Under the condition that <1, any algorithmically optimal strategy to PN2 is an
average optimal strategy to PNI.

Proof. From Lemma 3, we can conclude that any algorithmically optimal strategy of PNI is an
algorithmically optimal strategy of PN2, by the definition of an algorithmically optimal strategy.
Hopp, Bean, and Smith [11] showed that an algorithmically optimal solution is an average opti-
mal solution when the ergodic coefficient, a<1, which means <1 (recall Lemma 2). Hence,

the theorem is justified. =

Thus, to obtain an average optimal strategy of the original undiscounted nonhomogeneous
Markov Decision Process, PNIL, we can obtain an algorithmically optimal strategy of the
transformed f—discounted nonhomogeneous Markov Decision Progess, PN2. Bean and Smith [2]
developed an algorithm to find an algorithmically optimal strategy when the problem is
discounted and deterministic, and when the optimal strategy of the discounted deterministic
problem is unique.
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Unfortunately, PN2 is not a deterministic problem, although it is p—discounted. The next
theorem shows that we can represent PN2 deterministically by taking probability destributions
as states. Then, by solving the deterministic version of PN2, we can obtain the algorithmically

optimal strategy of PN2.

Theorem 3. The discounted denumerable nonhomogeneous Markov Decision Process problem,
PN2, can be represented as a deterministic problem, adopting probability distributions as
states, and can be solved by applying the deterministic solution algorithm developed by Bean
and Smith [2].

Proof. Consider a B—discounted nonhomogeneous Markov Decision Process, PN2. Let 2« =(gh,
7€) be a probability distribution over states 1, 2, - at time , and let

for = an optimal expected value of beginning at stage 0 with state distribution P«
= max({ ; ri(xi)pi'i'ﬁfﬁkﬂ}, Dir1 E@yyy for £=0, 1, 2, -,
where

D=L P'p JEI
Oi—=set of feasible distributions at stage £.

There is nothing stochastic in the above functional equation, since if we know 2, we can
have all 2’'s recursively. So we have represented PN2 as a deterministic problem, which can
be solved by the deterministic algorithm developed by Bean and Smith [2]. =

The next corollary summarizes the content of this section.

Corollary 1. Under the condition that B<1, and when the algorithmibally optimal strategy
of PN1 is unique, we can find an average optimal strategy of PN1 by transforming it into

PN2 and solving deterministically.

Proof. From Theorem 2, Theorem 3, and the uniqueness theorem (Theorem 6) in Bean and
Smith [3]. =

Thus, to solve PN1, we perform the following transformations :

e PN1 = PN2

e PN2 = an equivalent g—discounted deterministic problem,

Then, we can apply the deterministic solution algorithm to the B—discounted deterministic

problem to solve the undiscounted nonhomogeneous Markov Decision Process,
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5. Conclusion

This paper presents an approach for solving the nonhomogeneous Markov Decision Process
with average reward criterion. First, under the Doeblin condition, we transform the original
problem into an equivalent undiscounted homogeneous Markov Decision Process, Then, we
transform again into an equivalent discounted deterministic problem, taking, the Doeblen coef-
ficient as a discount factor. Since we know how to solve the discounted homogeneous problem,

we can solve the original problem.
APPENDIX : Behavior of the Average Value Function

The following examples show the abnormal (with respect to the discounted value function)

behavior of the average value function,

Question 1. (the deterministic case) Is the average value function continuous? That is, when

x"—x in the p—metric as N—o and x", x€X for all N, is it true that

N Ve
lugl_inf——N —hrpﬁlxnf—N ?
(counterexample)Let
x'=(a, b, b, b, )

x*=(a, a, b, b, b, ---)

x=(a, =, a, b b, b, )
e —t
N

and a reward from taking decision a decision b be 0.
Then,

x=(a, a, a, )

However, since the average value function is tail-driven,

lim inf PN

n 11 N 0, and

N
lim inf N 1
Thus, in general

. VN VxiN)
lll’hll'l_‘llrlf'——'——N #11&;1 inf~——N .
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Question 2. (the Markov Decision Process case) When a Markov Decision Process is weakly
ergodic, is the average value function is continuous? That is, when the Doeblin coefficient, f,

is less than 1 and x"—x in the p—metric as N—o and «", x€ X for all N, is it true that

tim inf ). i VAN
N—x N N—x

(counterexample) We have a two state Markov Decision Process. The policy a consists of

decisions, a: and a. and the policy & consists of decisions, b and &, i.e.,
a=(a, a)" and b=(b, b)".
By taking the decision aior a2, a reward of 1 can be obtained. By taking the decision b or b,
no reward (0) can be obtained, i.e.,
Rv(a)=(1,1)" and R~b)=(0,0)".
The probability transition matrices for the policy a and the policy & are as the following.
0.5 0.5}

Rx(a) =Rn(b) = [
0.5 0.5

Then, the Markov Decision Process is weakly ergodic with an ergodic coefficient, as, equal to

0.5.

Let
x'=(a, b, b, b, ---)
x’=(a, a, b, b, b, --)
xN=(a, -, a, bbb, )
\-—v—l
N
Then,

x=(a, a, a, )

However, since the average value function is tail-driven,

V(2" N)

lim inf—=-25= =(0,0 )", and
. VilxN)
liminf—""M = (1, 1)
im in N (1,1)



F17% 2% Equivalent Transformations of Undiscounted Nonhomogeneous Markov Decision Processes 143

Thus, in general

tim ing PN 4 i i VN,
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