The Local Myocardial Perfusion Rates of Right Atrial Cardioplegia in Hearts with Coronary Arterial Obstruction

Jay One Lee, M.D.*, Kyung Phill Suh, M.D.*

The quantitatively measured local myocardial perfusion rates with microspheres are used as an objective indicator of even distribution of cardioplegic solution, and the efficacy of the retrograde right atrial route of cardioplegia is evaluated in hearts with various levels of coronary arterial obstruction.

After initial antegrade cardioplegia under the median sternotomy and aortic cannulation, 60 hearts from anesthetized New Zealand white rabbits are divided in random order as normal group (ligated left main coronary artery: MA, MR), and diagonal group (ligated proximal diagonal artery: LA, LR). Half of each group (N=10) are perfused with antegrade cardioplegia (A) under the pressure of 100 cmH₂O and the other half with retrograde right atrial route (R) under the pressure of 60 cmH₂O (St. Thomas cardioplegic solution mixed with measured amount of microspheres). The myocardium is subdivided into segments as A (atria), RV (right ventricle), S (septum), LV (normally perfused left ventricular free wall), ROI (ischemic myocardium of left ventricular free wall), LV and ROI are further divided into N (subendocardium) and P (subepicardium). The resulting local myocardial perfusion rates and N/P of each group are compared with Wilcoxon rank sum test.

The weight of the hearts is 5.94±0.66g, and there are no statistically significant differences (p>0.05, ANOVA) between six compared group. The mean flow rate (F: ml/g/min) of MR group is comparable with MA group (p>0.05), but in N and L group, there are significantly depressed F with right atrial route of cardioplegia, which means elevated perfusion resistance with this route. In spite of no significant differences in delivered doses of microsphere (DEL) between compared groups (p>0.05, ANOVA), there are significantly depressed REC and NF in hearts with right atrial cardioplegia which suggests increased requirement of cardioplegic solution with this route.

The interventricular septum shows poor perfusion with right atrial route of cardioplegia without obstruction of coronary arteries. But, with obstruction of coronary artery supplying septum as in M group, the flow rate is superior with right atrial route of infusion.

*서울대학교 의과대학 홍부외과학교실
*Department of Thoracic and Cardiovascular Surgery, College of Medicine, Seoul National University
The left ventricular free wall perfusion rates of every ROI with R route are superior to that of A route ($p<0.05$). But, in LV segments, there are unfavorable effects of right atrial cardioplegia in L group, although the subendocardial perfusion is well maintained in N group.

The LV free wall of left main group shows depressed perfusion rates with antegrade route as compared with ROI segments of diagonal group. But, by contraries, there are increased perfusion rates and superior N/P ratio with retrograde right atrial route. It implies more effective perfusion with right atrial route of cardioplegia in more proximal coronary arterial obstruction (i.e., M group as compared with L group).

As a conclusion, all region of ischemia have superior perfusion rates with right atrial cardioplegia as compared with antegrade route, and especially excellent results can be obtained in hearts with more proximal obstruction of coronary arteries which would otherwise result in more severe ischemic damage. But, the depressed perfusion rates of the segments with normal coronary artery in hearts with coronary arterial obstruction may be a problem of concern with right atrial cardioplegia and needs solution.

Key words: myocardial protection, local myocardial perfusion rate, right atrial cardioplegia, microspheres, coronary arterial disease

I. 서 론

심장수술의 궁극적 목표에 도달하기 위해서는 모든 심근세포를 수술중의 힘탈출에서 구하여 심장기능을 보존해야 하는 것이임은 재론에 여지가 없다. 그러나, 심전적으로 심근보호법에서는 아직 누구에게나 받아 들여지는 정설이 정립되어 있지 않다. 단지 많은 임상의들이 수술시야를 총계하고 완전히 정지된 심장을 얻기 위하여 대통령자간단을 신호하는데, 이 상황에서는 산소화 저온 심근보호액을 이용한 저온 심장정지법을 이상적인 심근보호법으로 여기고 있다. 그러나, 저온 심전정지법에서 심근보호액이 효과를 보러면 미세 순환을 근일하게 관리하여 심근보호액이 각 세포에 고르게 작용하여야 한다.

관상동맥질환자에 있어서 필연적으로 야기되는 심근보호액의 고르지 못한 분포는 수술 시 심근보호액의 목표가 되는 힘탈출부의 심근손상을 야기하므로 수술의 의의를 감소시키는데 아니라 손상의 정도가 심할 때는 심근의 손상의 원인이 되어 수술결과에 큰 영향을 주게 된다.

관상동맥질환에서 이러한 문제점은 해결하기 위한 심근보호법의 하나로 역행성 심근보호액 관리법이 있다. 이 방법은 혈착된 관상동맥 대신 정맥관인 관상 동맥이나 심방위로 심근보호액을 주입하여 관상동맥을 통하여 보세혈관에 도달하도록 하는 방법으로, 실험적으로 또는 임상적으로 그 유용성이 보고되었다.

역행성 심근보호액 관리법은 처음에는 문헌카테터를 이용하여 관상동으로 관류시키는 방법이 주류였으나, 우선방울심실 및 심장중격의 정맥액은 적층 심장과 달리 심장내로 직접 끓어난다는 사실과 공선에 의한 관상동맥의 정맥액에 성공적인 관상동의 손상이나 부정맥의 발생등의 보고로 우선 및 심장중격의 심근보호가 미흡하다는 지적이 대두되었고, 우선방울로 직접 심근보호액을 주입하는 방법이 고안되었다. 심근보호액 우선방울은 우선방울의 해부구조와 맞물려 관상동 주입법에 비하여 우선방울 심근관류를 보일 뿐 아니라, 우선방울의 혈착화로 후 심장손상도의 보호효과도 기대할 수 있다고 한다.

우선방울에서의 문제는 심방중격손이이나 우선방울의 수술적 적용이 곤란한 점과, 우선방울, 우선방울, 그리고 주혈관맥을까지 심근보호액을 주입해야 하므로 대량의 용액이 필요하다는 점이다.

종래의 역행성 주입법의 효과에 대한 연구는 채소주입이나 관상동맥의 혈관조영, 심근은도의 측정 및 그 저하속도, 심장관류액의 분석 및 간결체 패턴(sterile casting)방법, 관상동맥의 간접적인 방법을 이용한 방법이 있었다. 심근보호액의 세포막 및 세포내 대사에 대한 작용에 필수적인 각 세포막의 심근보호액의 도달정도 즉, 보세혈관으로의 응액의 도달정도를 정량으로, 실험적으로 또는 임상적으로 그 유용성이 보고

- 2 -
적으로 측정하려는 시도는 최근까지도 문헌보고가 보이지 않는 정도이다.33,34. 아직 관상동맥의 혈착위치나 혈착정도에 따른 심근보호액의 모세혈관 관류량을 정량적으로 측정하여 분석한 연구는 보고된 바 없다.

관상동맥의 혈착정도에 대한 평가는 매우 작은 관상동맥을 가진 가토를 사용한 본 실험에서는 객관적인 기준으로 실험하기가 매우 어려워 이 방법의 대상에서 제외하였다. 관상동맥의 혈착부위에 따른 좌심실기능에 대한 영향은 근위부의 혈착부로 심근의 넓은 부위를 혈액성태로 유도하도록 좌심실기능에 보다 큰 영향을 주게 된다35. 따라서 순행성 관류 시는 보다 근위부의 혈착이 더욱 고르지 못한 모세혈관 관류를 가져올 수 밖에 없으므로 심근보호효과가 불충분한 위험이 크다. 그러나, 역행성 관류에서의 심근 국소관류량은 그 심근 부위의 관상동맥경계의 발달정도 및 혈관내 부분의 단락의 존재여부와 음액의 주입부위(즉, 관상동맥이나 우심방이나)의 상관관계뿐 아니라 모세혈관을 통과한 이후의 혈착 부위의 세관맥이나 동맥의 압력과도 관계가 있으므로 순행성 관류대와 정반대라고 단연하기 어렵다. 전술한 바와 같이 작은 심장대혈관에서 심근 보호액이 효과적이려면 미세순환을 균일하게 관리하여 심근보호액이 각 세포에 고르게 작용하여야 한다36. 특히, 직접 세포에 도달하지 않더라도 전달될 수 있는 적절한 효과가 큰 비중을 차지하는 이완소화 심근보호액을 사용하는 장항보다는 산소화 음액을 사용할 경우 음액의 모세혈관으로의 고른 분포가 더욱 중요하게 된다37. 그럼에도 관상동맥의 혈착부위에 따른 혈관의 양성이나 국소 심근관류량은 미치는 영향에 대한 정량적 정거도 없이 역행성 심근보호액의 유용성을 연구하여 이에 부합하는 관상동맥혈착 시 어떤 관류액이 더욱 유용한 지를 추론한다.

II. 연구목적

1) 궁극적 연구목적

본 연구에서는 정상 및 관상동맥을 관찰한 가토의 적출장갑에서 방사성 동위원소 표지 미립구를 사용하여 관상도세혈액의 순행성 및 역행성 관류액의 각 심근분절에의 심근 국소관류량을 정량적으로 측정하여 관상동맥혈착의 유무 및 부위(level)에 따른 두 관류액의 관류량의 분포를 파악하여 상기 방법의 객관적인 유용성을 검토하고 임상적용의 이론적 타당성을 확인함과 동시에 합리적인 적용방법을 추론함을 목적으로 한다.

2) 실행목표

가) 각 실험군에서의 심장의 증량과 심장관류의 자료를 분석하여 각 군별 관류특성을 비교한다.
나) 각 실험군에서 순행성 및 역행성 관류 시의 심 심실경계의 국소관류량을 비교한다.
다) 각 실험군에서 순행성 및 역행성 관류 시의 좌심실경계의 국소관류량을 비교한다.
라) 주두동맥과 대각지근의 좌심실경계의 국소관류량을 분석하여 관상동맥혈착부위(level)에 따른 심근 심근보호액의 관류량의 상대적 유용성을 비교하여 어떤 부위의 관상동맥혈착 시 어떤 관류액이 더욱 유용한 지를 추론한다.

III. 연구재료 및 방법

1) 연구재료

실험동물은 60마리의 건강한 가토(New Zealand white rabbit, 체중 2-3kg : 연령 5-6개월의 술동)를 사용하였으며 20마리씩 두쪽으로 정상 관상동맥군 (이하 정상군(N)이라 함)과, 좌측 주두동맥 결장군 (이하 주두동맥(M)이라 함) 및 근위부 대각지근 결장군(이하 대각지근(L)이라 함)으로 나누었으며 각군은 4마리씩 동원하여 총 역세균(NA, NR, MA, LA, LR)으로 나누어 실험하였다.
모세혈관관류량을 측정하기 위하여 사용한 방사성 동위원소 표지 미립구는 반감기가 27.1일인 DuPont 사의 cobalt-57 NEN-TRAC® 미립구로 0.01% Tween 80을 함유한 10% 면역스트레스액 15cc에 0.5 mCi가 포함된 혈액액으로 미립구의 크기는 16.5±0.1μ이며, 표준시료 혈액액 0.2cc(300mg)당 2.65×10^4 개의 미립구가 포함되어 있다.

심근보호액의 주입은 roller형의 실험기용 pump (Cobe사 제품)을 사용하였으며 그 관류량은 실험 전 미리 측정된 유량(cc/RPM)을 참고하였다. 심근보호액의 관류압은 3-way를 통한 수압측정하의 유량 조절로 정정하였다.

2) 연구방법

심혈동물에 3% 포수크로말(chloral hydrate, 5cc/kg)을 복강내 투여하여 마취를 유도시킨 후 기관절개를 통하여 기관관산화 인공호흡을 시키면서 노출된 내경정맥으로 해파린(300u/kg)을 정주하고, 정주용 큰관전개를 시행하였다(그림 1). 심장은 노출시킨 후 하대정맥과 좌상대정맥을 결합 절단하고 정주용 나비바늘의 뒷부분을 걸리락 만든 배관으로 대동맥삼관을 하였다. 40μ크기의 구멍을 가진 패커 어피크(Sai 사 제품)를 통과시간 4℃ St. Thomas 심근보호액(대한중의약제약, 10cc/kg)을 대동맥삼관을 통하여 주입하여 심정지의 유도하였다. 상대정맥을 절단하여 환원된 4℃ 심근보호액에 심장을 담가서서 국소 저온요법의 효과를 내게 하였으며, 상대정맥의 절단부를 통하여 우심방 삼관을 시행한 후 주체동맥을 결합 절단하였 다. 완전 심정지 후 심장과 폐를 가로의 환경에서 심 제하기 직전에 주혈액공은 대동맥근부에서 좌측 주관 동맥을 배리하여 결합하였다(그림 2). 이때 심근보호 액을 주입하면서 관상동맥의 손상이 없도록 주의하여 배리하였다. 대각근에서는 심근보호액의 관류 시 0.01cc의 1% 젤티아나 바이오leting(gentian violet)을 주 입시켜 침실 심근내에 위치한 관상동맥을 찾아 가능 한 한 좌측 주관동맥에서 분지한 부위에서 가까운 대 각근의 주행 중 결합이 용이한 부위를 5-0 Prolene (Ethicon사 제품)으로 봉합 결합하였다. 결합 후 결합 된 관상동맥의 심근내 분포부위를 확인하기 위하여 젤티 아나 바이오leting 0.2cc를 관류 심근보호액과 함께 주입 하였다(그림 3). 이때 심장과 폐를 황해에서 결합하여 바이어에 넣고 순행성 또는 역행성 관류를 시작하였다.

관류량을 조절하면서 관류압이 순행성에서는 100cmH₂O, 역행성에서는 60cmH₂O로 조절될 때의 관류량으로 고정하여 실험에 이용하였다. 초기 심근보호액의 주입 시 심장방의 관류압이 60cmH₂O에 미치지 못하면서 좌심방 성형체가 폐쇄되지던 4개는 실험에서 제외하였다. 모든 심장에서 약간의 좌심방 성형이 관찰되었으나 우심방압이 좌심방이나 좌심실로 전달되는 않았다.

정상 관류압의 심근보호액 관류에서, 이미 40℃에 서 중량중인 미립구안력은 Vortex mixer로 5분간 처리하여 미립구들이 서로 영기치 않게한 후 인산화 용주사에서 중량을 측정한 후(Ohaus사의 Galaxy 400D을 사용, 최소 측정단위는 1mg, 100mg이상의 시료에서는 1%이하의 오차를 가짐) 심장에서 약 60cm 전방의 관류관에 주사하였다. 주사주 낙은 주사기의 중량을 다시 측정하여 중량차를 주입된 미립구의 양으로 기록하였다. 미립구를 주입한 후 3분간 계속 심근보호액을 주입하여 미립구가 심간내 모세혈관에 정착 분포하도록 한 후 주입중인관류관을 폐쇄하여 심장의 다른 처리 중 미립구가 억눌하여 실험요가를 방해하지 않도록 주의하였다. 심장을 폐와 종격동의 탐조적과 박리하여 분리하고 폐쇄된 관류관을 풀어 각 대동맥근부와 우측 심방내에 전류된 심근보호액을 주입된 방향으로 대부분 관류관하게 하였다. 그 후 심방(A), 우심실액(RV), 그리고 심실증격(S)과 좌심실액(LV)으로 분리하고 좌심실액은 젠티아나 바이오leting의 영색여부에 따라 정상관류관(LV로 표기)와 흐림부(ROI, REGION OF ISCHEMIA)로 나누었으며, 심기저에서 심전도를 심전도계에 하는 전에서 결합하여 그중 심혈관을 LVA로 명명하여 A, RV, S, LV, LVA, ROI로 나눈 후 LV, ROI는 다시 심내근부 (subendocardium, N)와 심외근부(subepicardium, P)로 나누었다. 주혈액공은 심실증격의 일부를 제외 한 대부분의 좌심실근이 ROI이며 정상관류관이 되는 심 실증격의 후부는 SNROI(SEPTUM, NO REGION OF ISCHEMIA)로, 심혈관은 ROI로 명명하였다 (그림 4~6). 심근의 정맥분화는 크게 관상동, 테네시 우심정맥, 테네시심장정맥으로 구분되며 이들 간에는 심근내에서 서로 연결되는 무수한 통로를 갖고 있다. 심실막의 관류량의 정량 정도량이 심외막정맥을 통하 여 관상동으로 환류되고, 23%는 전방심장정맥을 통하 여 우심방으로, 27%는 테네시우심정맥을 통하여 우심
Fig. 1. Finding of the intrathoracic structures after median sternotomy. A=aorta, MPA=main pulmonary artery, RV=right ventricle, LV=left ventricle.

Fig. 2. The distribution of ischemic (areas not stained) and nonischemic myocardium (areas stained with gentian violet) in heart with ligation of left main coronary artery (M group). MPA=main pulmonary artery, Lt. Main=ligated left main coronary artery.

Fig. 3. The distribution of ischemic (areas not stained) and nonischemic myocardium (areas stained with gentian violet) in heart with ligation of proximal diagonal artery (L group). Diagonal=ligated proximal diagonal artery.
Fig. 4. The distribution of ischemic (areas not stained) and nonischemic myocardium (areas stained with gentian violet) in heart with ligation of left main coronary artery (M group)
- A = atria, RV = right ventricle, S = septum, and LV = left ventricular free wall are separated with each other, and arranged according to their topography.

Fig. 5. The distribution of ischemic (areas not stained) and nonischemic myocardium (areas stained with gentian violet) in heart with ligation of left main coronary artery (M group)
- atria and ventricle (3 divisions from base to apex) arranged from the top downward.

Fig. 6. The distribution of ischemic (areas not stained) and nonischemic myocardium (areas stained with gentian violet) in heart with ligation of proximal diagonal artery (L group)
- atria and ventricle (3 divisions from base to apex) arranged from the top downward.
실로, 5%는 좌심실로 흘러 들어가며 심실증증의 정맥 혈류는 대부분 데바시우스정맥을 통하여 관류되는 등 각 싱크문체가 서로 상이한 혈관분포를 보인다. 이러한 다양한 혈관분포가 관호관방위와 영향을 줄 수 있으므로 본 실험에서는 심장, 우심장, 심실증증, 좌심실 자유벽(하혈부, 정상관류부 및 심심부) 등으로 나누어 측정하였고, 좌심실부위 심내근부와 심외근부로 분리가 용이한 LV와 ROI는 다시 심내근부와 심외근부로 나누었다.

각 심근 부분은 300mg 정도씩 나누어 측정용기에 담아 측량측정 후 냉장 보관하였다. 실험 중 미립구가 잔존할 것으로 보이는 모든 관류관과 기구는 생리시험수로 세척하여 심장을 관류하고 나온 심장관류액과 혼합하여 투입을 측정한 후 그 중 5ml를 측정기에 담아 심장조직과 같이 보관하였다. 보관된 시료는 전산하였고, 측량측정된 미립구 현대액 표준시료 300mg와 함께 Packard의 Multi-Pria gamma counting system으로 1분간 방사능계수를 측정하였다. 300mg의 미립구 표준시료는 15cc로 흡식하여 15개의 측정 용기에서 측정하여 합산하므로 각 측정용기에 각 심장 시료와 미립과 방사능계수를 측정되며 하여 coincidence loss에 의한 측정오차를 줄이도록 노력하였다.

상기 측정의 결과로, 미립구 표준시료의 방사능계수 (1200만 CPM)와 두 미립구현대액의 측량을 이용하여 구한 주입된 미립구의 방사능계수(Delivered, 이하 D로 약칭)와 표시판 관류량(Nutritive Flow, 이하 NF라 약칭)은 나타내는 각 싱크분석의 방사능계수의 함과 싱크로 주입되지 않은 싱크외부의 관류량이나 관류액에 간련한 미립구의 방사능계수(Non-nutritive Flow, 이하 NNF라 약칭)와 모든 시료에서 증명된 방사능계수의 함(Recovered, 이하 R라 약칭) 중, NF+NNF로 구할 수 있으며, 아래 공식을 이용하여 각 싱크분석에서의 싱크보호액의 보세혈관 관류량을 계산하였다.

<table>
<thead>
<tr>
<th>심장조직의 방사능계수 x 심근보호액의 싱장내 주입속도</th>
<th>심장으로 주입된 방사능계수</th>
</tr>
</thead>
</table>

심장으로 주입된 모든 미립구는 보세혈관에 축적된 다음 가정하에서 생기는 상기 공식에 의해서 국소 모세혈관 관류량을 구하였는데, 싱크보호액의 싱장내
로의 주입속도(f)와 roller pump로 조절된 싱크보호액의 관류량과의 비는 DEL–NNF의 비와 같으므로 [즉, roller pump flow / f=(DEL–NNF) / NF] 따라서 f=roller pump flow×NF / (DEL–NNF)이고, 심장으로 주입된 미립구의 방사능계수는 NF이다. 싱크보호액의 싱장내로의 주입속도(f)는 싱근 1g당 1분간의 관류량(ml/g/min)으로 전환하여 평균관류량(f)으로 표시하였다. 모든 국소관류량도 싱근 1g당 1분간의 관류량으로 표시하였다.

좌심실을 구성하는 좌심실벽과 심실증증은 좌심실 기능에 중요한 부분 관류량의 통계처리를 하였으나 상기 국소관류량 중 직접적인 좌심실기능과 관계한 A, RV등과 좌심실의 껍데 같은 부분을 나타내는 SNR-OI, LVA, ROIA등은 실험결과의 복잡성을 피하기 위하여 통계처리에 포함시키지 않았다. 심장증증은 완전한 심내근(endocardium)으로 생각되므로 N, P로 구분하지 않았으며 그 외의 좌심실벽은 싱크보호에 매우 중요하다고 알려져 있는 심내근부의 상대적 관류량 을 알기 위하여 심내근부와 심외근부로 나누어 관류량 을 측정하고 각 심근부의 N/P비도 구하였다.

연구성적의 본석은 SPSSPC+ (1985년도 SPSS통계 PROGRAM)를 사용하였으며 각 군별 시료의 값수가 10으로, 많지 않아 비모수적 추론을 이용하였다. 각 군에서의 심장의 증증과 DEL은 Kruskall-Wallis 1 way ANOVA로 분석하였으며 그 외의 심장관류의 자료와 관류량 및 N/P비의 비교는 Wilcoxon의 순위검정을 이용하였다.

심장의 증증과 관류자료를 검토한 후,
1) 각 군에서 심실증증의 국소관류량의 비교,
2) 각 군별로 순행성 및 사용관류서의 좌심실벽의 심내근부와 심외근부의 국소관류량 및 N/P비의 비교, 그리고
3) 순행성 및 사용관류서로 주동맥군과 대각막군에서의 좌심실벽 관류량의 심내근부와 심외근부의 국소관류량 및 N/P비의 비교도 시도하였는데, 0.05의 유의수준을 기준으로 유의도를 판정하였으며 결과는 평균±표준편차로 기록하였다.

IV. 연구성적

1) 각 실험군에서의 심장의 증증과 심장관류자료의 분석(표 1).
실정의 중량은 5.94±0.66g으로 여성군 간의 유의한 차는 없었다(NA: 6.00±0.34g, NR: 6.20±0.51g, MA: 6.10±0.77g, MR: 5.74±0.24g, LA: 6.25±1.34g, LR: 5.37±0.60g, p>0.05). 대각지군의 허혈부의 중량은 정상관류부의 40.7±5.0%였다. F는 정상군과 대각지군에서는 유심방관류에서 열동한 관류량을 보였으나(p>0.05), 주동맥군에서는 두 관류검 간의 유의한 차를 발견할 수 없었다. DEL은 순행성 및 우심방 관류 간의 유의한 차는 없으나(p>0.05), REC와 NF는 향상 순행성에서 유의하게 높은 수치를 보였다.

본 연구에서의 미립구의 수득율은 순행성 관류량은 85.9±10.6%(NA: 84.7±6.0%, MA: 82.7±9.2%, LA: 90.1±13.8%)로 우심방관류의 67.4±10.7%(NR: 78.4±2.9%, MR: 60.5±7.1%, LR: 63.3±9.9%)에 비하여 유의하게 높았다(p>0.05).

2) 각 실험군에서의 심실중격의 국소관류량의 비교 (표 2).

정상군 및 대각지군에서는 순행성 관류량에서 우수한 관류량을 보였고, 주동맥군에서는 우심방 관류량에서 우수한 관류량을 나타내었다. 우심방으로 관류한 중격의 관류량은 정상군(0.37±0.07ml/g/min)에서

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>F*</th>
<th>DEL</th>
<th>REC*</th>
<th>NF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>10</td>
<td>2.90±0.32</td>
<td>954±182</td>
<td>810±189</td>
<td>779±185</td>
</tr>
<tr>
<td>NR</td>
<td>10</td>
<td>2.33±0.42</td>
<td>858±19</td>
<td>673±34</td>
<td>339±44</td>
</tr>
<tr>
<td>MA</td>
<td>10</td>
<td>1.90±0.32</td>
<td>889±68</td>
<td>732±67</td>
<td>615±76</td>
</tr>
<tr>
<td>MR</td>
<td>10</td>
<td>1.76±0.30</td>
<td>867±23</td>
<td>527±62</td>
<td>261±53</td>
</tr>
<tr>
<td>LA</td>
<td>10</td>
<td>3.10±0.21</td>
<td>1080±177</td>
<td>954±44</td>
<td>895±46</td>
</tr>
<tr>
<td>LR</td>
<td>10</td>
<td>1.57±0.29</td>
<td>976±113</td>
<td>621±142</td>
<td>292±27</td>
</tr>
</tbody>
</table>

Notes:
* : The difference is significant between each antegrade and retrograde cardioplegia by Wilcoxon rank sum test(p<0.05) except F of MA and MR group
F : mean flow rate of cardioplegia : ml/g/min
DEL : delivered dose of microspheres : CPM /1E4
REC : recovered dose of microspheres : CPM /1E4
NF : nutritive flow of microspheres : CPM /1E4
NA : antegrade cardioplegia in normal coronary anatomy
NR : right atrial cardioplegia in normal coronary anatomy
MA : antegrade cardioplegia with ligated left main coronary artery
MR : right atrial cardioplegia with ligated left main coronary artery
LA : antegrade cardioplegia with ligated diagonal artery
LR : right atrial cardioplegia with ligated diagonal artery

Table 2. The interventricular septal perfusion rates in hearts with or without coronary ligation (ml/g/min : n=10)

<table>
<thead>
<tr>
<th>Group</th>
<th>Antegrade</th>
<th>Right atrial</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD#</td>
<td>Mean</td>
</tr>
<tr>
<td>N</td>
<td>3.34</td>
<td>0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>M</td>
<td>0.79</td>
<td>0.46</td>
<td>0.93</td>
</tr>
<tr>
<td>L</td>
<td>3.64</td>
<td>1.07</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Notes:
* : by Wilcoxon rank sum test
: standard deviation
N : group with normal coronary artery
M : group with ligated left main coronary artery
L : group with ligated proximal diagonal artery
주동맥근(0.93±0.15ml/g/min) 및 대각직근(1.06±0.46ml/g/min)에 비하여 유의하게 낮은 관류량을 보였다(p<0.05).

3) 각 실험군에서 순행성 및 우심방 관류의 차이의 비교
 가) 정상군에서의 최심실벽의 국소관류량의 평가 (표 3).
 심내근부의 관류량(LVN)은 두 방법 군의 유의한 차가 없으나, 심외근부(LVP)는 순행성에서 우수한 관류량을 보였으며 N/P비는 우심방관류시 유의하게 증가되었다.
 나) 대각지군에서의 최심실벽의 국소관류량의 평가 (표 4).

정상관류부(LA)는 순행성 관류시 우수한 심내근 부 및 심외근부의 국소관류량을 보이며, N/P는 두 관류량 간의 유의한 차이가 없었다.
반면에 허혈부(ROI)에서는 우심방관류법에서 우수한 심내근부 및 심외근부의 국소관류량을 보였으며 N/P비에서도 우수한 심내근부의 상대적 관류량을 보였다.

다) 주동맥근군에서의 최심실벽의 국소관류량의 평가 (표 5).
심내근부와 심외근부의 국소관류량과 N/P비가 모두 우심방관류시 유의하게 높았다.

4) 주동맥근과 대각지군의 허혈부 최심실벽의 국소관류량의 평가(표 6,7).
우심방관류에 있어서 심내근부와 심외근부의 국소관류량 및 N/P비가 모두 주동맥근에서 우수하였다 (표 6).

Table 3. The left ventricular free wall perfusion rates in hearts with normal coronary anatomy
(ml/g/min: n=10)

<table>
<thead>
<tr>
<th>Segment</th>
<th>NA</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD#</td>
</tr>
<tr>
<td>LVN</td>
<td>3.02</td>
<td>0.77</td>
</tr>
<tr>
<td>LVP</td>
<td>2.91</td>
<td>0.66</td>
</tr>
<tr>
<td>LVN/P**</td>
<td>1.01</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Mean: Mean, SD#: Standard deviation

Notes:
☆: by Wilcoxon rank sum test
#: standard deviation
NA: normal antegrade group
**: The ratio between LVN and LVP

Table 4. The left ventricular free wall perfusion rates in hearts with ligated diagonal artery
(ml/g/min: n=10)

<table>
<thead>
<tr>
<th>Segment</th>
<th>LA</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD#</td>
</tr>
<tr>
<td>LVN</td>
<td>5.40</td>
<td>1.65</td>
</tr>
<tr>
<td>LVP</td>
<td>4.08</td>
<td>1.10</td>
</tr>
<tr>
<td>LVN/P***</td>
<td>1.32</td>
<td>0.21</td>
</tr>
<tr>
<td>ROIN</td>
<td>0.86</td>
<td>0.32</td>
</tr>
<tr>
<td>ROIP</td>
<td>1.03</td>
<td>0.26</td>
</tr>
<tr>
<td>ROIN/P***</td>
<td>0.87</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Mean: Mean, SD#: Standard deviation

Notes:
☆: by Wilcoxon rank sum test
#: standard deviation
LA, LR: see legend in Table 1
LVN, LVP: see legend in Table 3

ROIN: subendocardium on ischemic LV
ROIP: subepicardium of ischemic LV
***: The ratios between LVN, LVP and ROIN, ROIP respectively
반면에 순행성 관류에서는 심대근부와 심외근부의 국소관류량이 대각지근에서 유의하게 높았다(표 7).

V. 고 침

심장의 국소관류량을 보는 실험은 주로 잠재나 가토를 사용하는데 44,45 본 연구에서는 가토를 사용하였다. 이는 구하기 쉽고 다루기 쉬우며 적출된 심장의 크기 도 실험하기에 적당하기 때문이다 46. 본 실험에서는 가토가 아닌 유심실로 우측 관동맥이나 좌전하행지의 분합 절단 시 우심실천장이 발생하여 용액이 누출되므로 우측 관동맥이나 좌전하행지를 절합한 군을 실험대상에 포함시키지 못하였으나, 근위부 대각지 결찰 시의 혈혈도 정상관류부의 40.7%로 나타나 상당

| Table 5. The left ventricular free wall perfusion rates in hearts with left main coronary ligation (ml/g/min: n=10) |
|---|---|---|---|---|---|
| Segment | MA | SD | MR | SD | P-value* |
| ROIN | 0.29 | 0.19 | 3.29 | 0.62 | <0.05 |
| ROIP | 0.32 | 0.23 | 1.70 | 0.15 | <0.05 |
| ROIN/P*** | 1.00 | 0.61 | 1.98 | 0.48 | <0.05 |

Notes:
* : by Wilcoxon rank sum test
#: standard deviation
*** : The ratio between ROIN, ROIP
MA, MR : see legend in Table 1

| Table 6. The local myocardial perfusion rates of left ventricular ischemic myocardium with right atrial cardioplegia (ml/g/min: n=10) |
|---|---|---|---|---|---|
| Segment | MA | SD | MR | SD | P-value* |
| ROIN | 3.29 | 0.62 | 1.82 | 0.79 | <0.05 |
| ROIP | 1.70 | 0.15 | 1.48 | 0.51 | <0.05 |
| ROIN/P*** | 1.98 | 0.48 | 1.23 | 0.33 | <0.05 |

Notes:
* : by Wilcoxon rank sum test
#: standard deviation
*** : The ratio between ROIN, ROIP
MR, LR : see legend in Table 1

| Table 7. The local myocardial perfusion rates of left ventricular ischemic myocardium with antegrade cardioplegia (ml/g/min: n=10) |
|---|---|---|---|---|---|
| Segment | MA | SD | LA | SD | P-value* |
| ROIN | 0.29 | 0.19 | 0.86 | 0.32 | <0.05 |
| ROIP | 0.32 | 0.23 | 1.03 | 0.26 | <0.05 |
| ROIN/P*** | 1.00 | 0.61 | 0.87 | 0.28 | <0.05 |

Notes:
* : by Wilcoxon rank test
#: standard deviation
*** : The ratio between ROIN, ROIP
MA, MR : see legend in Table 1
히 넓은 실균을 차지하며 본 실험에서 추정되며 균과 각각의 비교로도 관상동맥혈관의 위위(level)에 따른 두 관류법의 자극해 당한 균소관류량의 비교는 낙혹스럽게 되었다고 본다. Berdeaux 등\(^{67}\)은 미립구의 이용을 위한 관류관 실험에서 1.95%는 모유의 단락을 통하여 흘러가고 8.3-11.9%는 웅직이므로 역류하여 60%는 심근내의 동양구조 전후의 포세혈관(pre- postsinusoidal capillary)에 촉각되고 있었는데 나머지 30%가 항신은 어느 시료내에서도 증명되지 않는 부분이 있다고 하였고, Buckegerg\(^{68}\)은 미립구 실험은 최적의 실험조건에서도 20%이내의 촉각오차를 감수해야 한다고 하였다. 본 연구에서는 미립구의 수확율은 실험군에 따라 순상성에서는 85.9±10.6(범위는 82.7-90.1)가 수득되었으나 우심방 관류 시에는 67.4±10.7(범위 60.5-78.4)만이 수득되어 나머지 심근과 관통장치, 관류액에서 측정한 방사능에서 포착되지 않았으며, 우심방 관류에서, 특히 관통액의 혈액이 있는 균에서는 낮은 수득율을 나타내었다. 이 소견은 실제 심장으로 주입된 관류액과 pump의 관류량과는 차이가 있음을 드러주므로 관류량(f)을 측정한 방사능계수를 이용하여 측정하였다. 이러한 소견으로 볼 때 관류관의 철저도를 정확히 계산하는데는 무리가 있어보이며, 또 보고자들의 보고에서도 관상동맥 관류량의 관류액의 성장\(^{69}\)과 실험조건에 따라 6.98-7.52ml/g/min\(^{69}\)에서 0.82-0.56ml/g/min\(^{39}\)까지 다양하여, 동일 실험조건에서의 상대적 비교는 신뢰성이 있으나 측정된 관류관의 철저도를 이용하여 측정된 산소공급량과 추정한 심근영역에서의 산소소모량을 비교하여 국소의 낮은 관류관에도 불구하고, 유수한 심근보호효과를 제공하는 것\(^{31}\)은 무리라고 생각되어 이러한 계산은 본 실험에서 다루지 않았다. 다만 순상성 관류와 우심방 관류에서의 국소심근관류량의 상대적인 비교에만 적용을 찾추었다.

본 실험에서 사용한 방사능 표지 미립구는 각 기관별로 혈류를 측정하는데는 매우 정확한 것으로 알려져 있으나\(^{34} \), 심장과 같은 미세한 혈류문제를 가진 기관내의 국소관류량을 측정할 때에는 관류관이 많은 부위로 미립구가 선발적으로 과다 촉각되는 경향이 있다. Utley\(^{66}\), Tripp\(^{67}\) 등은 5-9μ 크기의 미립구가 적혈구 및 몸의 관류관보다 큰 관류관군을 보인다. 그리고 큰 크기의 미립구는 모세관에 촉각되지 않고 다시 혈액으로 나와 관류량 측정에 부적당하다고 한다\(^{65}\). 일반적으로 여러 보고자들은 15μ 크기의 미립구를 사용하고 각 시료당 최소한 200개이상의 미립구가 존재할 수 있도록 미립구의 주입량을 결정하면 몇을 만한 결과를 얻을 수 있다고 하였고\(^{30,44,51}\), Tuma\(^{60}\)은 시료당 5만개 이상의 미립구가 존재하면 방사능 측정기의 해상도로 넘어서는 방사능량으로 5%이상의 coincidence loss가 발생하여 촉각오차가 있을 수 있다고 하였다. 본 실험에서도 예비실험을 거쳐 모든 시료가 이 범위의 미립구를 함유하도록 고안하였다. 즉 각 시료량 10⁴ CPM(200개의 미립구의 방사능계수) 내지 2×10⁴ CPM(4400개의 미립구의 방사능계수)의 방사능이 측정되는 경우의 미립구인 원칙에 0.2cc(300mg, 1200만 CPM, 미립구 2.65×10⁴개)내외를 주입량(DEL)으로 결정하였다.

실험의 관류조건은 순상성은 관류압을 100cmH₂O로 하였으며, 역행성에서는 우심방주입 시 관류압이 60mmHg를 넘으므로 우심실의 과대기장으로 술 후 우심실 기능부전이 옳을 수 있다는 의견이 있고\(^{30,66}\) Buckberg\(^{50}\)도 50mmHg를 안전한 한계로 보았으며 본 실험에서도 관류압을 60cmH₂O로 고정하였고 관류액 내에 미세한 입자라도 혼입되면 관상동맥의 경계를 유발할 수 있으므로 40μ 크기의 소공을 가진 혈액과기계를 이용하여 모든 심장관류액을 여과하였다.

실험결과에서 DEL은 NA, NR, MA, MR, LA, LR 군 간의 유의한 차가 발견되지 않는 반면 REC와 NF는 모든 실험군에서 순상성 관류 시 유의하게 높아 이 실험의 조건에서는 순상성이 전체적으로 모세혈관 관류량이 양호함을 알 수 있는 반면 역행성 관류는 상대적으로 심근보호액의 소모가 커서 모세혈관관류에서 이탈되는 관류량이 많음을 알 수 있다. F는 NA-NR (2.90±0.32 vs 2.33±0.42ml/g/min, p<0.05), LA-LR (3.10±0.21 vs 1.57±0.29ml/g/min, p<0.05)군에서는 순행성이 높으나 MA-MR군 (1.90±0.32 vs 1.76±0.30ml/g/min, p<0.05)에서는 양 관류법 간의 유의한 차가 없어 결과적으로 근위부 관류관의 혈류체제(M군)에서 역행성 관류 시, 나 군에 비하여 상대적으로 우수한 평균관류량을 보였으며 역으로 N 군, L군에서는 역행성 관류의 관류저항이 순행성에 비하여 높음을 알 수 있다.

심실층격의 국소관류량의 비교에서 정상군(NA vs NR : 3.34±0.43 vs 0.37±0.07ml/g/min, p<0.05)과 대각군(LA vs LR : 3.64±1.07 vs 1.06±0.38mg
\(\text{g/min, } p<0.05 \)은 순행성 관류 시 유수한 관류를 나타내었으며, 심실중격의 허혈부인 주동맥곤(MA vs MR : 0.79±0.46 vs 0.93±0.15ml/g/min, p<0.05)에서는 우심방 관류량에서 우수한 관류를 보여 심실중격에서는 우심방 관류량으로 허혈부의 국소관류량은 개선을 보여 주었다. 그러나, 우심방 관류량에서는 의심중격의 국소관류량은 수동근과 대각지근에 비하여 정상근에 유의하게 낮아 정상관동맥에서 우심방 관류량이 관상동맥과 동일하게 심실중격의 심근보호에 문제가 있을음을 알 수 있다.

좌심실벽의 국소관류량은 정상근에서는 우심방관류량(NA vs NR : 3.02±0.77 vs 3.38±1.24ml/g/min, p<0.05)은 순행성과 동일수준으로 유지되어 허혈성 손상에 가장 악한 좌심실의 심내근부(subendocardium : N)에 대한 심근보호효과는 순행성 관류과 비슷한 것으로 판단할 수는 있지만 우심방관류가 더 우수하다는 증거는 없다. 대각근은의 정상관류량에서는 우심방관류량(LVN, LVP : 2.18±0.73, 1.52±0.53 ml/g/min)에 비하여 순행성 관류(5.40±1.65, 4.08±1.10ml/g/min)시 더 높은 국소관류량을 보이고(p<0.05) 그 N/P비도 두 방법간의 유의한 차가 없어((LA vs LR : 1.32±0.21 vs 1.41±0.26, p<0.05) 우심방 관류량에서 정상관류량의 불리한 좌심실 보호효과를 예견할 수 있다. 반면, 허혈부에서는 심내근부((LA vs LR : 0.86±0.36 vs 1.82±0.79mg/g/min, p<0.05)와 심외근부((LA vs LR : 1.03±0.26 vs 1.48±0.51mg/g/min, p<0.05)의 국소관류량 및 그 N/P비((LA vs LR : 0.87±0.28 vs 1.23±0.33, p<0.05)에서 모두 우심방 관류 시 유의하게 높은 수치를 보여 우심방 관류로 좌심근보호 효과를 얻을 수 있을 것으로 생각된다. 주동맥근에는 정상관류량도 우심방관류량에서 순행성에 저지되지 않고, 국소관류량 및 N/P비에서도 우심방 관류량에서 유의하게 높아 우심방관류량의 심근보호효과가 절대적으로 우수할 것으로 기대된다. 그러므로 본 실험의 조건하에서는 심실중격을 포함한 좌심실벽의 모든 허혈부의 국소관류량은 우심방관류법으로 개선이 가능하였다. 따라서 관상동맥관절시 허혈부의 심근보호는 순행성 관류보다 우수한 심근보호효과를 가져올 수 있을 것으로 결론을 내릴 수 있다. 반면에 정상관류량에서는 우심방관류법으로 얻을 수 있는 것들이 없으며 경우에 따라 다소 열등한 심근보호 효과를 가져오려는 소견이다.

주동맥근과 대각근근의 허혈부에서의 우심방관류의 결과를 비교하면 심내근, 심외근의 국소관류량 및 그 N/P비도 주동맥근에서 더욱 우수한 것으로 나타났다(표 6). 반면에, 동일부위의 순행성 관류의 결과는 N/P비는 유의한 차가 없으나 국소관류량은 대각근에서 유의하게 높아(표 7). 결과적으로 순행성 관류의 결과와 비교한 대명적인 정상관류량의 우수성은 LR군 보다 MR군, 즉 주동맥근의 우심방관류시 더욱 두려워진다.

상기 결과를 종합해보면 모든 허혈부의 국소관류량과 N/P비는 우심방관류로 개선시킬 수 있으며, 특히 좌측 주관동맥의 범위와 같은 보다 근육부의 혈착 시 더욱 좋은 효과를 기대할 수 있다. 그러나 정상관류는 우심방관류법에서 그 N/P비도 증가되지 않고 대개의 국소관류량은 저하되어 국소관류량의 주측에서는 순행성 관류법에 비하여 전혀 입증이 없을 것으로 생각된다. 그러므로 이러한 문제점을 개선하기 위하여 순행성 관류를 병용하여야 할 것으로 판단되며, 이는 Shiki[21], Masuda[22], 그리고 Parving[32,37] 등도 관상동관류를 이용한 실험에서 우선 순행성관류도 심마비를 유도할 후 역행성관류를 시작하면 서로의 장단점이 보완적으로 작용하여 심근보호에 도움이 된다고 하여 본 실험의 결과와 상동하는 결과를 보고한 바 있다. Nakamura 등[24], Diehl 등[25,26], Chen 등[31,32]의 주장에 의하면 우심방관류법은 우심방관류로 직접적인 저온효과를 나타낼 수 있고 우심방으로 직접 연결된 테배시우스조직으로 관리될 수 있는 우심방, 우심실, 심실 중격 등의 심근에는 탁월한 보호효과를 나타낸다고 하였다. 본 실험에서는 국소관류량을 직접 측정한 결과 심실중격에서는 우심방관류에서도 관상동관류와 마찬가지로 순행성관류에 비하여 열등한 관류량을 나타내었으며, 단지 중격을 관류시키는 동맥의 혈착이 있는 주동맥근에서만 우심방관류에서 순행성관류보다 약간한 관류량을 나타내었다. 그러나 순행성관류시의 관류량의 저하로 의한 상대적인 우위인 것이다. 그러므로 본 실험의 결과로는 우심방관류는 심실중격의 국소관류량을 반복스러게 개선시킬 수 없다고 생각된다. 단지 우심방관류의 국소 저온효과는 심실중격의 심근보호에 도움이 될 것이다. 그러나 결론적으로 우심방관류를 순행성관류와 병용하면 심근보호의 측면에서 상승효과를 가져올 수 있다는 데는 이론의

- 12 -
여지가 없다. 순행성 관류와 역행성 관류를 병용하는 방법은 우선 기초 심장지가 빠르고 박동충인 심장에서도 쉽게 시작할 수 있는 순행성 관류로 심장지를 유도한 후 동일한 양의 심근보호액을 순행성과 역행성으로 교대로 주는 방식이 일반적이다30).

주축 주관동맥의 완전폐쇄 시의 역행성 관류액의 배출경로는 정확하게 밝혀진 바 없으나 일반적으로 관상동 주입범위에서 논의되는 심근내 동맥구조(sinusoid)를 통한 우심으로의 배출은 실현 다자인상 불가능이며 주축 관동맥과 우축 관동맥 간의 부행로를 통해 배출되는 것외의 경로는 생각하기 어렵다. 그러므로 주관동맥의 폐쇄와 우축 관동맥의 기지부 혈착 시에도 역행성 주입액 효과절미는 매우 흥미로운 연구결과가 될 수 있을 것이다.

본 실험은 관동맥병변으로 관류액의 결정을 이용함으로 관동맥병변이 100%확적이고, 금성모델이라므로 임상에서 존재하는 단막의 부재로 임상적용는 다소 차이가 있고, 대상 심장을 다분절로 나누어하므로 생리학적 및 혈액학적인 연구를 할 수 없었으나, 모세혈관으로의 관류를 직접 측정하였으므로 심근 저온효과에 의한 심근보호와 심근보호액의 직접적인 작용에 의한 심근보호효과의 구분이 가능하였다는 점과 진동적인 좌전후행자의 제일 종격지의 기지부 하방만을 견정하는 대신 관동맥의 여러 혈착의 부위(level)에 따른 관류량을 관찰한 점이 기존의 연구에 비하여 장점으로 생각된다.

본 연구의 결론을 토대로 임상에서 보다 유사한 상황의 관동맥병변에서의 정량적 관류량의 측정이 이루어지면 특정 해부구조의 관동맥병변 번변에 특정 심근보호액 관류법이 적용되가는가를 논리적으로 추론하여 임상에서 적용할 수도 있으려 기대한다.

VI. 결 론

방사능 표지 머리구를 이용한 가토의 심근근소관류량의 평가에서 다음과 같은 결론을 얻었다.
1. 관동맥병변을 결절한 심장에서 심근보호액 우심방관류법으로 모든 혈혈두의 국소관류량을 개선시킬 수 있다.
2. 분포 관동맥병변의 병변이 없는 정상관류두의 국소관류량은 우심방관류시 순행성 관류보다 유리한 점은 없고 상황에 따라 불리하다.

3. 우심방 관류의 효과는 근위부 관동맥의 병변일수록 크다.

그러므로 순행성 관류와 우심방관류를 병용하여보다 완전한 심근보호액을 이룰 수 있을 것이다.

REFERENCES

11. Hammond GL, Davies AL, Austen WG : Retrograde coronary sinus perfusion, A method of myocardial protection in the dog during left coronary

