심실중격결손의 크기 측정에 있어서 수술검사의 의의

김 근* · 장봉현** · 이종태* · 김규태* · 이상범**

Abstract

Significance of the Preoperative Examinations in Predicting the Defect Size of Ventricular Septal Defect

Keun Kim, M.D.*, Bong Hyun Chang, M.D.*, Jong Tae Lee, M.D.*, Kyu Tae Kim, M.D.*, Sang Bum Lee, M.D.**

We evaluated the correlation between the predicted defect size at preoperative examination and the actual defect size at operation room, by examining 69 cases of ventricular septal defect operated at the department of Thoracic and Cardiovascular surgery, Kyungpook University Hospital from January 1988 to December 1990. We excluded cases associated with other cardiac anomalies.

Of the 69 cases, 39 are male and 30 female, forming 1.3 : 1 sex ratio in males favor. Their age range from 6 months to 16 year, and 4,3 on the average. Their body weights are from 6 to 45kg and 15 on the average.

According to Soto's classification, perimembranous type costitutes 42 cases(61%), doubly committed subarterial type 23 cases(33%), and muscular type 4 cases(6%).

The average diameter of defect size is 8.0±3.5mm measured in 2D-echocardiogram, 5.6±3.4mm in angiogram, and 7.4±4.4mm in operative field.

There is statistically significant correlation between the size from 2D-echocardiogram and actual defect size(p=0.001), and no significant difference between the two.

Especially in the cases without anurysmal formation, they are nearly the same.

Cardiothoracic ratio, pulmonary to systemic flow ratio, pressure ratio and resistance ratio also have statistically significant correlation.

Main pulmonary artery to descending aorta diameter ratio is correlated with the actual defect size. There is statistically significant correlation between the size from angiogram and actual defect size with some difference.
서론
심실종격절손은 심실중격에 국소화된 개구부를 한 개 또는 여러개를 가지는 가장 흔한 성인성 심장질환으로서 전체 성인성 심장질환의 20~30%를 차지하며, 다른 복합 심장질환에 동반된 경우를 합하면 50%에 달한다. 심실종격절손의 임상경과는 다양하며, 환자의 연령, 결손부의 크기, 좌우 단락의 정도, 그리고 혈관내질환의 정도 등에 의해 결정된다. 이 중 결손의 크기는 매우 다양하며, 보통 대형, 중등도, 소형의 크기로 나누는데 심초음과, 심도자 및 심혈관 조영증의 검사로 관찰에 그 크기를 예측할 수 있다.

저자들은 심실종격절손에서 결손의 크기를 예측하는데 이용되고 있는 상기한 술전 검사와의 검사자들과 수술장에서 측정한 결손의 실제 크기와의 관계관계를 비교 분석하고자 한다.

대상 및 방법

1988년 1월부터 1990년 12월까지 경북대학교병원 홍부외과에서 간식수술을 받은 15세 이하의 환자들중 다른 심장기형을 동반하지 않은 심실종격절손 69례를 대상으로 하였다.

심실종격절손의 크기를 술전에 알아보기 위해 시행한 검사들중 흉부 X-선 환영소견은 흉부 X-선 후진방영상에서 심초방사수층을 구하여 이용하였으며, 심초음과 검사는 MERIDIAN 심초방사수층을 이용하여 한 사람의 소아심장 전문의에 의해 결손의 크기를 측정한 자료를 이용하였다. 심도자검사에 의한 검사자들은 패, 하혈류망비 (Qp/Qs), 알력비 (Pp/Ps) 및 저위비 (Rp/Rs)를 비교 자료로 삼았다. 심혈관 조영술에서 심판의 크기측정은 수술기의 직경을 측정하였다. 상행동맥은 우폐동맥과 교행하는 부위에서, 하행동맥은 직경 직장부에서, 그리고 좌폐동맥은 주체동맥의 최대직경을 측정하였다. 그리고 좌폐동맥 직경의 상행동맥 직경에 대한 비율 (DMPA/DAO), 하행동맥 직경에 대한 비율 (DMPA/DDAO)을 구하여 비교 자료로 이용하였다. 심혈관 조영술에서 심실종격절손의 크기를 측정한 때에 막양우형 (Perimembranous type)은 주로 LAO (60°) view에서, 이중연관 동맥하형 (Doubly committed subarterial type)은 주로 RAO (30°) view에서 측정하였는데, 화면의 확대비율 (1.4)로 계하여 얻어지는 값을 결손크기의 측정값으로 삼았다. 그러나 심혈관 조영술에 의한 결손크기 측정시에 11례에서는 심실중격절손의 크기를 측정할 수 없었는데 이들은 막양우형 9례, 이중연관 동맥하형 2례였었다.

심사기 결과의 통계적 처리는 SPSS/PC + 통계 프로그램을 사용하여 P<0.05 일때 유의한 상관관계가 있는 것으로 판정하였다.

근육형식 (Muscular type)은 4례 뿐이어서 통계처리에서 제외하였다.

결과

대상환자의 수술시 연령 분포는 6개월에서 16세까지, 평균연령은 4.3세였다. 1세부터 3세까지의 환자 가 46%로 가장 많았다. 남자의 평균연령은 4.7세였고, 여자의 연령은 3.9세였다. 대상환자중 남자가 39례, 여자가 30례로 남녀비는 1.3:1로 남자가 많았다(표 1).

<table>
<thead>
<tr>
<th>Table 1. Age and sex distribution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(year)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td><1</td>
</tr>
<tr>
<td>1~3</td>
</tr>
<tr>
<td>4~7</td>
</tr>
<tr>
<td>8~13</td>
</tr>
<tr>
<td>>13</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

환자의 체중은 최소 6Kg에서 최고 45Kg 이었는데, 평균체중은 15.9Kg이었다.

심실중격절손의 위치는 Soto의에 의한 분류법에 따랐는데, 막양우형이 42례로 가장 많았으며, 이중연관 동맥하형이 23례, 그리고 근육형식이 4례였다(표 2).

수술장에서 측정한 심실중격절손의 크기는 전체 평균값으로는 7.4±4.4mm였다. 그리고 전체 69례중 16례에서 중력류 형성을 보였으며, 막양우형에서 7례, 이중연관 동맥하형에서 9례가 있었다.

단순 흉부 X선상의 심초방사수층과 수술장에서 측정한 심실중격절손의 크기를 측정한 값 사이에는 유의한 상
Table 2. Anatomic location of ventricular septal defect.

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of cases(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimembranous</td>
<td>42(61%)</td>
</tr>
<tr>
<td>Doubly committed subarterial</td>
<td>23(33%)</td>
</tr>
<tr>
<td>Muscular</td>
<td>4(6%)</td>
</tr>
<tr>
<td>Total</td>
<td>69(100%)</td>
</tr>
</tbody>
</table>

관관계가 있었다(P=0.001). 심실중격결손의 결손형별에 따른 상관관계를 보면, 막양부형에서 유의한 상관관계가 있었으나 이중연관 동맥혈형에서는 유의한 상관관계가 없었다(표 3).

Table 3. Relationship between VSD size and cardiothoracic ratio.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.353</td>
<td>0.001</td>
</tr>
<tr>
<td>Perimembranous</td>
<td>0.522</td>
<td>0.001</td>
</tr>
<tr>
<td>Doubly committed subarterial</td>
<td>0.185</td>
<td>0.120</td>
</tr>
</tbody>
</table>

p : probability
r : correlation coefficient

69례 전체에서 심실중격결손 크기에 대한 심초음파상의 측정치와 수술장에서의 심초음파 사이에는 유의한 상관관계가 있었음이(P=0.001)(표 4)(도 1). 두 값의 일치도 비교해 보았을 때도(0.195), 막양부형에서 더욱 일치하는 값을 보였고, 특히 중격류 형성이 없는 경우 거의 일치하는 값을 보였음이(P=0.001)(도 2). 그리고 회귀방정식을 구한 결과 다음의 식을 도출하였다.

심실중격결손의 실제 크기=0.942+0.813x 심초음파 측정 결손의 크기
심초음파상 결손의 평균지름은 8.0±3.5mm였다.

Fig. 1. Relationship between VSD sizes measured of 2D-echogram and by operation.

Fig. 2. Relationship between VSD sizes measured of 2D-echogram and by operation in cases without aneurysmal formation.

심도자 소견과 결손의 실제크기간의 상관관계를 조사하였을 때, Pp/Ps와 Qp/Qs는 통계적으로 상관관계의 유의성이 높았으나 Rp/Rs는 유의성이 낮았다. 그리고 결손형별에 따른 상관관계의 차이를 보면, 막양부형에서는 상관관계의 유의성은 보여주었으나 이중연관 동맥혈형에서는 유의한 상관관계가 없었다(표 5).

심혈관조영상 측정된 결손의 크기의 평균지름은 5.6±3.4 mm였다. 상행대동맥, 하행대동맥 및 레시오동맥의 크기를 측정하여 그 비와 결손의 실제크기를 비교해 보았다.

DMPA/DDAO와 결손의 크기 사이에는 유의한 상관관계가 없었으나 DMPA/DDAO 결손의 크기 사이

Table 4. Relationship between VSD sizes measured by 2D-echogram and by operation.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.633</td>
<td>0.001</td>
</tr>
<tr>
<td>Perimembranous</td>
<td>0.694</td>
<td>0.001</td>
</tr>
<tr>
<td>Doubly committed subarterial</td>
<td>0.534</td>
<td>0.008</td>
</tr>
<tr>
<td>Aneurysm (+)</td>
<td>0.545</td>
<td>0.029</td>
</tr>
<tr>
<td>(−)</td>
<td>0.669</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table 5. Relationship between VSD size and Qp/Qs, Pp/Ps and Rp/Rs.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Perimembranous</th>
<th>Doubly committed subarterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qp/Qs</td>
<td>r=0.415</td>
<td>r=0.562</td>
<td>r=0.054</td>
</tr>
<tr>
<td></td>
<td>p=0.001</td>
<td>p=0.001</td>
<td>p=0.406</td>
</tr>
<tr>
<td>Pp/Ps</td>
<td>r=0.565</td>
<td>r=0.637</td>
<td>r=0.425</td>
</tr>
<tr>
<td></td>
<td>p=0.001</td>
<td>p=0.001</td>
<td>p=0.055</td>
</tr>
<tr>
<td>Rp/Rs</td>
<td>r=0.024</td>
<td>r=0.357</td>
<td>r=0.201</td>
</tr>
<tr>
<td></td>
<td>p=0.030</td>
<td>p=0.024</td>
<td>p=0.383</td>
</tr>
</tbody>
</table>

Qp/Qs: pulmonary to systemic flow ratio
Pp/Ps: pulmonary to systemic pressure ratio
Rp/Rs: pulmonary to systemic resistance ratio

Table 6. Relationship between VSD size and DMPA/MAAO and DMPA/DDAO.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Perimembranous</th>
<th>Doubly committed subarterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPA/MAAO</td>
<td>r=0.180</td>
<td>r=0.270</td>
<td>r=0.042</td>
</tr>
<tr>
<td></td>
<td>p=0.142</td>
<td>p=0.090</td>
<td>p=0.849</td>
</tr>
<tr>
<td>DMPA/DDAO</td>
<td>r=0.369</td>
<td>r=0.463</td>
<td>r=0.183</td>
</tr>
<tr>
<td></td>
<td>p=0.002</td>
<td>p=0.002</td>
<td>p=0.404</td>
</tr>
</tbody>
</table>

DMPA/MAAO: main pulmonary artery to ascending aorta diameter ratio
DMPA/MDAO: main pulmonary artery to descending aorta diameter ratio

에는 상관관계가 있었다(표 6). 결손의 크기에 대한
심혈관 조영상 측정치와 심직치 사이에는 유의한 상관
관계가 있었다. 특히 이중연관 동맥혈암이 마약부인에
비해 높은 상관관계를 보였으며, 증격류 형성이 없는
경우에서 더 높은 상관관계를 보였다. 그러나 측정치
와 심직치간의 일치도 비교에 있어서는 일치율이 심조
음과 검사에 비하여 낮았다(P=0.007)(표 7)(도 3).

Table 7. Relationship between VSD sizes measured
by angiogram and by operation.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.378</td>
<td>0.004</td>
</tr>
<tr>
<td>Perimembranous</td>
<td>0.332</td>
<td>0.059</td>
</tr>
<tr>
<td>Doubly committed subarterial</td>
<td>0.483</td>
<td>0.026</td>
</tr>
<tr>
<td>Aneurysm (+)</td>
<td>0.006</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>0.403</td>
<td>0.006</td>
</tr>
</tbody>
</table>

고 점

심실중격결손은 가장 흔한 선천성 심장결환이며, 신생아 1,000명당 1명 비율로 발생하며 모든 선천성 심

Fig. 3. Relationship between VSD sizes measured of angiogram and by operation.

결환의 25%를 차지한다6).
심실중격결손의 해부학적인 분류법으로는 Kirklin7),
Soto, Goor8) 등이 있는데 Soto 분류법에 따르 경우
막장부형이 70%를 차지하여 가장 높은 비도를 나타내고,
이중연관 동맥혈암이 그 다음 비도를 보이지만,
아연에서는 10% 내외인데 비해 동양인에서는 10~30%의 높은 비도를 나타낸다9-10). 저자의 경우에서도
Soto의 분류법을 따랐는데 박양부형이 61%를 차지하여 가장 많은 비도를 보였고, 이중연관 동맥하형이 33%, 근육부형이 6%로서 이중연관 동맥하형의 발생 비도가 백인에 비하여 현저하게 높았다.

심실중격검손의 자연과정은 중격의 크기, 환자의 연령, 중격의 위치, 좌우관련의 정도, 폐혈관 질환의 정도 등에 의해서 결정되는데[11][12], 자연세계는 경우에서부터 폐혈관세계에 속하는 심한 폐혈동맥 고혈압을 유발하는 경우에 이르기까지 다양하다.

이중 경에서의 크기 및 폐혈관세계에 많은 영향을 미치므로 해부학적 크기와 혈류역학적 수치의 관계가 여러 학자들의 관심사였다.

심실중격검손의 크기는 동상 대형, 중등도 및 소형으로 구분하는데 대형은 그 크기가 체표면적 1m²당 1cm, 또는 그 직경이 대동맥 판막의 직경의 1/2 또는 그 이상의 것을 말하고, 소형은 대동맥 판막의 직경의 1/3이하거나 또는 체표면적 1m²당 1cm 이하를 말하며, 중등도나 작은 것은 이 양자간의 중간사이가를 계정한다[13].

소형 경은 매우 작고, 체 체질량지수가 0.33이하로 폐혈관 성장이 없고, 좌우관련도 적다. 대형 경의 경우 이외는 폐혈관성장과 압력력 및 폐혈동맥의 수축기 압이 높으나 이들 수치의 변화는 대형 경중에서에서는 경술의 크기와는 관계없이 변화하여 경술의 크기와는 다른 요인으로 관계하는 것 같다[14].

심실중격검손의 수술은 경술의 크기, 위치, 좌우관련성장, 폐혈관성장 정도에 따라 결정하는데 심실중격검손이 적고, 좌우관련성장(Qv/Qs = 1.5이하)도 경미하고 폐혈동맥성장이 정상이며, 무중상일 경우 수술을 건강하지 않는 것이 보통이며 경술이 자연세계상 가능성을 매우 높다[15][16]. 즉 Keith, Hoffman 등은 연속적인 심도자율을 시행하여 경술의 크기가 작은 심실중격검손 의 약 30%에서 생후 7년내에 자연세계가 일어남을 입증하였고, Alpert[17] 등은 경술의 크기가 적은 경우의 자연세계율은 실험 50-60% 정도로 매우 높을 것이라고 추정하였다.

대형 경을 경우 수술시기는 환자의 임상증상, 폐혈동맥 성장 정도에 의해 결정되는 대비 심두전도 반응을 없는 심한 심방전, 반복되는 호흡기감염, 성장 장애, 심한 폐혈동맥 고혈압이 있는 경우 조기에 수술을 시행한다. 그렇지 않은 경우 1-2년 사이에 수술을 시행한다.

수술 후 사망율은 경술의 크기, 모양, 수술전 폐혈동맥 고혈압의 유무 및 정도, 환자의 연령, 동반기형의 유 무 및 종류등에 따라 차이가 있다[18].

이와 같이 수술전 경술의 크기를 적은 것은 중요한 의미가 있으며, 경술의 크기를 예측할 수 있는 심문검 사치들과 정맥주사의 상관관계를 밝히는 것도 매우 의미가 있다. 저자들은 수술검사치들 즉, 흉부 X-선 후진방영상에서의 심초음파검사, 심초음파상 측정치, 심도 자세 및 심혈관조영상 측정치 및 폐혈동맥과 생혈동맥의 직경비와 폐혈동맥과 하행대동맥의 직경비를 이용하여 수술 상태에서 측정한 걸안부의 실제 크기의 상관 관계를 심혈관형별 및 중격형성의 유무에 따라 알아보고 고자 하였다.

심혈관조영상 심실중격검손의 진단은 박양부형인 경우 long axial oblique view, 근육부형인 경우 four chamber view 또는 long axial oblique view 그리고 이중연관 동맥하형인 경우 elongated right anterior oblique view가 가장 좋다[19].

심초음파검사는 심실중격검손의 비혈관적인 진단에 매우 유용하게 이용되며, 경술의 위치와 크기와 진단에 영향을 미친다. 위치로는 박양부형, 이중연관 동맥하형 그리고 근육부형의 순서로 진단률이 높은데, 박양부형에서는 95%의 정확도를 나타낸다[20][21]. 또한 중격계가 형성된 경우 85-100% 중격계를 발견할 수 있다[22]. 심초음파 검사는 진단 뿐만 아니라 크기를 추정하는데도 유용하게 이용되어진다. 그러나 실제크기와 심초음파상 측정크기와의 상관관계는 아직도 알려지지 않고 있다. 물론 성태성에서는 심장의 방향성에 따라 경술의 크기가 변하기 때문에[23] 박달되는 심장에서 측정한 심초음파상 크기가 실제상황에서 정지된 심장에서 측정한 크기와는 어느 정도의 오차가 있을 수 있으므로 추측된다. Zoe Kecicoglu-Draelos 등의 심장 유사모델을 이용한 실험보고에서는 심초음파상 측정크기가 실제결과보다 작았으며, 여러가지 물리학적 요인으로 인해 어느 정도의 오차가 생기며, 조음파기 종류에 따라 그 정확도가 달라진다고 보고하였 다[24].

본 연구에서는 중격류 형성이 없는 경우 심초음파상 측정치와 심초음파 사이에서는 거의 일치하는 값을 보았고 화귀방정식을 구한 결과 다음의 식을 도출할 수 있었 다.

심실중격검손부의 실제크기 = 0.942 + 0.813 × 심초음파상
요 약

경북대학교병원 흉부외과에서 1988년 1월부터 1990년 12월까지 수술을 시행받은 심실증격결손 201례 중에서 다른 심기형을 동반하지 않은 69례의 환자들 대상으로 결손의 크기를 측정하는데 기여할 수 있는 슬관검사들과 수술품에서 측정한 결손의 실제크기와의 상관관계를 비교하였다.

남여의 비는 1.3 : 1이었고, 연령분포는 6개월에서 16세까지며, 평균연령은 4.3세였다. 폐중은 6Kg에서 45Kg까지며, 평균은 15.9Kg이었다. 박양부형(Perimembranous type, Type I)은 42례(61%), 이중연관동맥형(Doubly committed subarterial type, Type II)은 23례(33%), 근육부형(Muscular type)은 4례(6%)였다. 그리고 16례(23%)에서 증격류형성령을 보였다. 결손부의 평균저감은 심초음과 검사상 8.0±3.5mm, 심혈관혈형상 5.6±3.4mm였고, 수술품에서의 실측치는 7.4±4.4mm였다.

결손의 크기에 대한 심초음과상 측정치와 수술품에서의 실측치 사이에는 매우 유의한 상관관계를 가져왔으며(P=0.001) 두 값의 일치도 비교에 있어서도 일치율이 매우 높았다(P=0.195). 특히 증격류 형성이 없는 경우 거의 일치하는 값을 보였다(P=0.001). 심초음과상 측정치와 실측치 사이에 회귀방정식을 갖춘 결과 다음의 식을 도출하였다.

실심증격결손부의 실제크기=0.942±0.813×심초음파측정 심실결손부의 크기

래, 체 혈류량비(Qp/Qs)와 알림비(Pp/Ps) 및 저항비(Rp/Rs)는 박양부 결손에서는 결손의 크기와 유의한 상관관계를 가졌으나 각 P=0.001, P=0.001, P=0.024 이중연관동맥형 결손에서는 유의한 상관관계가 없었다 각 P=0.406, P=0.055, P=0.383.

심초관과 결손의 크기가 유의한 상관관계를 가졌다(P=0.001).

결손의 크기에 대한 심혈관조영상 측정치와 심초관의 사이에는 상관관계는 있었으나(P=0.004), 두 값을 비교해 봉리에서는 심초음과 검사 성적에 비해 일치율이 현저하게 떨어졌다(P=0.007). 특히 증격류 형성이 없는 경우 그 차이는 더욱 심해졌다(P=0.001).

폐동맥과 하행동맥의 직경비와 결손의 크기 사이에는 유의한 상관관계가 없었으나(P=0.142), 콜론하고 하행동맥의 직경비와 결손의 크기 사이에는 상관관계가 있었다(P=0.002).

REFERENCES