Change of End−tidal PCO₂ During Cardiopulmonary Bypass

The evaluation of the effectiveness of ongoing cardiopulmonary resuscitation efforts is dependent on the commonly used methods, such as the presence of femoral or carotid artery pulsations, arterial blood gas determinations, peripheral arterial pressure and intracardiac pressure monitoring. But recent studies suggest that end−tidal carbon dioxide tension serves as a non−invasive measurement of pulmonary blood flow and therefore cardiac output under constant ventilation.

A prospective clinical study was done to determine whether end−tidal carbon dioxide monitoring in open heart surgery under cardiopulmonary bypass could be used as a prognostic indicator of bypass weaning. We monitored end−tidal PCO₂ values continuously during cardiopulmonary bypass in 30 patients. 'Ohmeda 5210 CO₂ monitor' under infrared absorption method were incorporated into the ventilator circuit by means of a side point adaptor between endotracheal tube and ventilator tubing. 18 patients (Group I) were resuscitated from partial bypass followed by aorta cross clamp off and 12 patients (Group II) from aorta cross clamp off followed by partial bypass. But there was no difference between two groups (p>0.05). The value of end−tidal carbon dioxide tension during ventricular fibrillation or nearly arrest state was 6.6±2.9 mmHg, and at the time of spontaneous beating was 19.3±5.6 mmHg (Mean±Standard deviation). In conclusion end−tidal carbon dioxide tension monitoring clinically provides useful, continous, non−invasive and supplementary prognostic indicator during cardiopulmonary bypass weaning procedures.

I. 서론

심장내압의 저속적인 감시 등에만 의존해왔으며1) 미국심장학회에서도 심장암박에 의한 소생술시 경동맥의 막막을 만져보는 방법이 형류를 예측할 수 있는 가장 간단하고 유일한 방법이라고 하였다2). 그러나 최근 호기말 이산화탄소분압이 심장회복의 지표가 될 수 있다는 보고가 동물실험과 임상연구에 의해 많이 발표되었다2-1). 저자들은 인공심폐기를 이용한 심장 수술 시 심장의 상태에서 심장이 소생될 때까지 호기말 이산화탄소분압의 감시가 심장회복을 어느 정도 예측할 수 있는지를 알고자 본 연구를 시작하였다.
II. 대상 및 방법

연세대학교 원주의과대학 홍부외과학교실에서 1992년에 인공심폐기를 이용하여 심장수술을 받은 환자들 중 심근경색이 있었던 환자들과 심장회복이 촉각되지 않아 Biopump나 Intracorot Balloon Pump 등의 보조장치를 필요로 하였던 환자들을 제외한 30명을 대상으로 하였다. 이들은 남자가 17명, 여자가 13명이었으며, 나이는 1세에서 65세까지 (평균 연령 34.5 ± 22.0세), 병명은 신장성질환 13명, 후천성 질환 17명으로 중등도 저체온과 심정지액을 이용하여 수술하였다 (Fig. 1).

congenital	ASD Repair	6
Acquired	Valve Replacement	15
RA Myxoma	CABG	1

Fig. 1. Operation procedures.

모든 환자에서 전신마취 기관내시관을 시행한 후 인공호흡기를 연결하였으며 혈중의 이산화탄소분압이 35mmHg에서 40mmHg로 유지되도록 인공호흡기를 동반 분산기능을 조절하였다. 인공호흡기 연결 후 'Ohmeda 5210 CO₂ monitor'을 이용한 적외선 호흡법으로 호흡량 이산화탄소분압을 측정하였는데 제외수확 환기간 중 평균 환기량은 85%로 환기량을 시행하는 부분체외순환제산부

이상이 회복되어 인공심폐기를 이용한 평균이 때까지의 변화를 인공심폐기의 혈류 및 환자의 동맥압과 비교하여 전향적으로 분석하였다. 이산화탄소분압 측정에 사용된 Ohmeda 5210 CO₂ monitor는 각각의 환자에게 사용된 일정한 방법에 따라 calibration 시켰으며 이산화탄소 분압은 변화를 가져올 수 있는 중단소열후에 5분이내의 판할치는 제외시켰다. 제외환정 시 인공호흡기의 혈류는 각각의 표준화에 따른 혈류량을 기준으로하여 평균 동맥압이 50~70mmHg 사이에서 유지될 수 있도록 조절하였다. 심장회복 후 인공내시관 이상의 환자 (제 1군)에서는 완전체외순환 상태에서 부분체외순환을 이용한 후 동맥경 검사를 풀고 심하도를 유도하였고 12명의 환자 (제 2군)에서는 완전체외순환 상태에서 대동맥 검사를 풀고 심하도 유도 후 부분체외순환을 시행하였는데 이들 두 군에서의 호기말 이산화탄소분압의 비교도 함께 시행하였다.

III. 결과 (Fig. 2-4)

1) 인공심폐기 가동되기 전, 호흡기만 연결되어 있는 경우 호기말 이산화탄소분압은 평균 30.2±4.1 mmHg 이었다.

2) 심장회복되기 전 심질세동 상태에서 호기말 이산화탄소분압은 부분체외순환이 시작될 때부터 측정이 가능하였으며 제 1군에서만 해당하였고 평균 6.6±2.9mmHg 이었다.

3) 심장 박동이 회복되는 순간의 호기말 이산화탄소분압은 평균 19.6±6.5mmHg 이었다.

4) 인공심폐기의 혈류가 원래 자기 혈류의 75%일때 호기말 이산화탄소분압은 23.2±5.2mmHg, 50%일때 26.4±4.9mmHg, 25%일때 28.2±5.5mmHg, 0% 즉 막표류를 만취었을 때 30.1±5.7mmHg로 인공심폐기 가동 전과 비슷하게 나타났다 (p<0.05).

5) 심폐소생술 시 부분체외순환을 먼저 시행한 제 1 군과 대동맥 검지를 먼저 풀 제 2군 사이에서 호기말 이산화탄소분압 차이는 없었다 (p>0.05).

IV. 고찰

심폐소생술시 심장회복의 효과를 측정하는 일반적인 간단한 방법으로 대동맥이나 경동맥의 백반유, 동검사, 동맥혈가스측정 등이 있으나 상관관계가 미약하고 정확한 정보를 제공하지 못하는 제약이 있다. MacKenzie와 Del Guercio 등에 의하면 수축기동맥압과 심박출량과는 상관관계가 별로 없다고 하였다.

<table>
<thead>
<tr>
<th>State of Bypass</th>
<th>End - tidal PCO₂ (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prebypass</td>
<td>30.3 ± 3.8</td>
</tr>
<tr>
<td>Ventricular Fibrillation</td>
<td>6.6 ± 2.9 (n=18)</td>
</tr>
<tr>
<td>Beating</td>
<td>19.3 ± 5.6</td>
</tr>
<tr>
<td>Pump Flow 75%</td>
<td>22.0 ± 4.9</td>
</tr>
<tr>
<td>Pump Flow 30%</td>
<td>26.0 ± 4.9</td>
</tr>
<tr>
<td>Pump Flow 25%</td>
<td>28.1 ± 5.4</td>
</tr>
<tr>
<td>Bypass Stop</td>
<td>29.7 ± 5.7</td>
</tr>
</tbody>
</table>

Fig. 2. Change of end-tidal PCO₂ during cardio-pulmonary bypass.
Fig. 3. Change of end-tidal PCO₂ during cardiopulmonary bypass, but there is no difference between two groups.

Fig. 4. Change of end-tidal PCO₂ during cardiopulmonary bypass. V.F (Ventricular fibrillation).

14,15). 이완기 대동맥압과 심근관용량을 이용한 심근혈류의 추정과 심장내압을 지속적으로 측정하는 경우 어 느 정도 도움이 되나 준비에 시간을 요하며 종합자실의 감시기구를 이용하여야 하는 번거로움이 따르게된다13,16).

호기말 이산화탄소분압과 심박출량의 관계는 1955 년 Elam 등17)에 의하여 처음 밝혀진 이후 많은 동물실험을 통해 확인되었으며 현재는 호기말 이산화탄소
분압의 측정은 많은 임상분야에서 적용되고있다8-12). 심장회복에 이르면 대동맥 이산화탄소분압이 감소하고 혼합혈액의 이산화탄소분압이 증가하는데 Weil 등18)은 혼합혈액의 이산화탄소분압의 증가는 심박출량의 감소로 인해서 펌프액의 혈류가 감소되어 펌프 통한 이산화탄소 제거율이 감소하기 때문에 초래된다는 가설을 세운 바 있다. Gudipati 등19)은 동물실험을 통

하여 이를 확인하였으며 심박출량과 폐동맥혈류, 호기

말 이산화탄소분압 사이에 높은 상관관계가 있다고 하

였다. Nunn 등20)는 심박출량이 감소하면 호기말 이산

화탄소분압이 감소하는 기전을 첫째 폐로 전달되는 이

산화탄소의 감소 물체 폐의 사상의 증가 즉 혈류에 대

한 환기의 비가 증가되기 때문이라고 설명하였는데 이

는 일차호흡량에 대한 사상의 비가 증가하면서 펌프내

이산화탄소분압의 감소가 초래됨을 의미한다.

Sanders 등21)는 호기말 이산화탄소분압과의 관상동맥

관류량 사이에 상관 관계가 매우 높다고 하였으며 이

는 심박출량과 역시 비례한다고 하였다. 한편 Gazz-

muni 등22)는 동맥혈이산화탄소분압이 심박출량과 관상

관계가 매우 높아 지속적인 동맥혈가스검사가 심장소

생의 좋은 지표라고 하였다. 그러나 동맥혈 가스검사

는 침습적인 방법일 뿐만 아니라 검사결과를 기다려야

하는 등의 단점은 가지고 있어 지속적인 감시방법으로

사용하기에는 적합하지 않은 문제가 있는데 반해 최근

의 보고들은 호기말 이산화탄소분압의 지속적인 감시가

심장회복의 지표로서 비침습적이고 간편한 방법임

을 강조하고있다14-17,20). Isserles 등21)는 호기말 이산

화탄소분압과 심박출량의 수치적인 변화보다는 백분율

의 변화가 더 밀접한 관계가 있다고 하였다. Sanders

등11)에 의하면 심폐소생술 중 호기말 이산화탄소 분압

이 10mmHg 이상인 군은 모두 사망하였고 10mmHg

이하인 군은 모두 사망하였다. 또한 생존하여 퇴원할

수 있었던 군은 평균 17±6 mmHg로 높은 값일수록

좋은 결과를 얻을 수 있음을 알 수 있다.

이러한 배경들을 근거로 저자들은 인공심폐기계를 이

용한 개심술시 심정지 상태에서 심장회복이 될 때까지

의 호기말 이산화탄소분압의 변화와 환자의 혈압, 인

공심폐기계의 혈류량 등을 관찰하여 호기말 이산화탄소
분야의 변화가 심장회복 정도의 판단이나 인공심폐기 이탈 등의 결정에 도움이 될 수 있는지를 전향적으로 연구하였다.

Weil 등이에 의하면 심폐소생술시 동맥과 정맥의 이산화탄소분압 차이가 생기며 폐동맥의 혈류감소로 정맥의 이산화탄소가 축적된다고 하였다. 만약 호흡을 일정하게 유지하면 폐를 통한 이산화탄소의 배출은 폐 판류에 의존하고 결과적으로 심박출량과 관계가 있음을 알 수 있다. 저자들은 연구 성격과 이산화탄소 생성량을 일정하게 유지시킬 수는 없었으나 호흡을 일정하게 하기 위하여 기관환관 후 인공호흡기를 연결하여 일회호흡량을 10ml/kg로 유지하였고 호흡수는 환자의 나이 등을 고려하면서 인공심폐기 사용하지 않은 상태에서 혈중 이산화탄소 분압을 35~40mmHg로 유지시킬 수 있었던 환자를 1시간 동안 동일하게 사용하였다. 한편 대상 환자 설정 시 심근경색증이나 저심박출증 등으로 인하여 심장회복의 장애가 예측되었던 환자들을 제외시켰으며 Biopump이나 Intracardiac balloon pumping을 사용하였던 경우도 배제하였으며 또한 중환자실(Bivon) 주사시 폐로 배출되는 이산화탄소의 양이 증가하므로 정상으로 회복되는 동안 즉 주사후 5분간 대상에서 제외시켰으며, 논문을 유 지하기 위하여 평균 대장맥압을 50~70mmHg로 일정하게 유지하도록 pump의 혈류를 조절하였다.

심폐소생술시에 제외순환을 시행하였던 Gazmuri 등에의 됨을 이용한 동물실험에서는 심장정 전 원래 호기말 이산화탄소분압은 29.8±1.0mmHg, 심실세동 시에는 3.8±0.6mmHg, 심장리한 소생술 시행중에는 5.2±0.8mmHg로 저자들의 30.2±4.1mmHg, 6.0±2.9mmHg와 비슷하였으며 심박출계수와의 상관관계는 0.92로 높은 상관관계를 보인다고 하였다. 또한 호기말 이산화탄소분압이 15mmHg 이상, 폐동맥야압이 60mmHg 이상되어 인공심폐기 이용이 가능하다고 하였지만 저자들의 경우 심장방전이 돌아오는 당시의 호기말 이산화탄소분압은 평균 19.6±6.5mmHg로 최소 20mmHg 이상이어야 인공심폐기 이용을 시도할 수 있었다.

인공심폐기를 이용한 개심술시 심정지 상태에서 심폐소생을 시도할 때 숨자에 따라 또는 수술 종류에 따라 부분폐외순환을 먼저 시행하고 대동맥 검사를 먼저 실 때 심박동을 유도하는 경우와 대동맥 검자를 먼저 풀고 심박동 유도 후 부분폐외순환을 하는 경우가 있어 저자들은 두께의 근으로 나누어 교차분석을 한 결과 호기말 이산화탄소분압의 차이가 없는 것으로 보아 두 가지 술식이 심장회복에 별관 영향을 주지 않음을 알 수 있었다(p>0.05).

호기말 이산화탄소분압의 측정치에 영향을 줄 수 있는 영향요소로는 환자의 이산화탄소 생성량, 폐기능의 변화, 측정치의 오차 등의 여러가지를 들 수 있는데 이런 요소들 중 많은 것은 임상실험이나 실험실에서 체제할 수 없는 것들이 많은 문제점을 안고 있지만 본 연구 대상에서는 모든 대상에서 유사한 호기말 이산화탄소 분압치의 변화를 보여 주었다.

V. 결 론

연세대학교 원조의과대학 홍보의과학교실에서는 30명의 개심술환자에서 호기말 이산화탄소분압의 변화를 지속적으로 측정하여 다음과 같은 결과를 얻었다.

호기말 이산화탄소분압의 지속적인 감시는 비침습적이고 간단한 방법으로 심장수술 시 심장회복을 예측할 수 있는 하나의 지표가 될 수 있다.

REFERENCES

2. Standards and guidelines for cardiopulmonary resuscitation(CPR) and emergency cardiac care(ECC). JAMA 1980 ; 244 : 453 – 508.
6. Gudipati CV, Weil MH, Bisera J, Deshmukh HG, Rackow EC. Expired carbon dioxide: a non-
14. MacKenzie GJ, Taylor SH, McDonald AH, Donald KW: Hemodynamic effect of external car-