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Parametrically Excited Vibrations of
Second—Order Nonlinear Systems
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Abstract

This paper describes the vibration characteristic of second-order nonlinear systems

subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic

nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since

the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is

examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu

equation in the first instability region are obtained by using a perturbation technique and are

compared with those by a numerical integration method. It is shown that the response

amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic

nonlinear damping force. The largest response amplitude of parametric vibration occurs in

the first instability region of Mathieu stability chart. The parametric excitation induces the

response of a dynamic system to be subharmonic, superharmonic or chaotic according to

their dynamic conditions.

1. Introduction

The subject of vibration is very important in
engineering and science as was well described
by Bishop? such that “It is no exaggeration to
say that it is unlikely that there is any branch
of science in which vibration does not play an
important role”.

* gasfotoleta

Vibration can be classified in several ways
the
characteristics of excitation sources and so on.

according to a damping effect,

These are damped vibration, undamped
vibration, free vibration, forced vibration, self
-excited vibration, parametrically excited
vibration, etc. A classical text book such as

Nayfeh and Mook? introduces such kinds of
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vibration, problems in much detail. Of the
vibrations above, the parametrically excited
vibration is investigated in this paper with an
emphasis on the role of hydrodynamic
nonlinear damping force in limiting the
response amplitudes.

The parametric vibration denotes the
motion of a system with a time-varying
stiffness rather than a constant value. In
nature, there are many examples of physical
systems exhibiting parametric vibration: a
pendulum whose support oscillates at an angle
with the vertical(Hsu and Cheng®), a turbine

blade connected to a whirling shaft
(Kellenberger*, mechanisms on vibration fou-
ndations(Thompson and Ashworth®), a
rotating shaft with a time-varying axial thrust
(Namachchivaya®) and so on. Bolotin”, and
Nayfeh and Mook?® show several examples
of parametrically excited systems in their
comprehensive books and cite many reference-
s ralated to parametric vibrations.

In the marine field, there are also many
dynamic systems undergoing parametric
vibration such as ship rolling motion by
following or oblique seas(Roberts®), lifted load
motion of a crane vessel(Patel and Witz®),
yaw motion of tension leg platform (TLP) by
head seas (Rainey'?), lateral motion of
marine risers and TLP tethers by surface
platform heave motion(Hsu'”, and Patel and
Park'®), etc. Figure 1 shows typical examples
of physical systems exhibiting potential
parametric vibrations. Recently, the problems
of combined forcing and parametric excitation
have been investigated (Park and Patel'®'?¥)

Since the parametric vibration is described
by the Mathieu equation, the latter has been
also extensively studied in the mathematical
field prior to the application study of the
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Fig. 1 Examples of physical systems under

parametric excitation

parametric vibration. The solutions of the
Mathieu equation can be stable or unstable
according to a combination of its parameters.
This aspect means that the parametric
vibration problem involves the nature of
dynamic stability. Thus obtaining a stability
chart is also important in interpreting the
of the

parametric vibration problems. The Mathieu

solutions Mathieu equation, i.e.,
equation was first introduced by French
scholar E. Mathieu in 1868 when he intended to
determine the vibrational modes of a stretched
membrane having an elliptical boundary.
Early eminent contributions to the solution
of the Mathieu equation are attributed to E. L.
Ince and S. Goldstein. Ince'® computed the
Mathieu
equation and obtained the stability chart for

characteristic numbers of the

small parameters. Goldstein'® seems to be the

first systematic contributor to present
numerical results for the periodic Mathieu
function. McLachlan'” was also an important
contributor to the solution of the Mathieu
equation. Most recent research into the
Mathieu equation has been carried out to solve
the nonlinear equation using perturbation
techniques. Using these techniques, linear and

nonlinear Mathieu equations have been solved
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by investigators such as Stoker'® and
Nayfeh'?,

In this study, as a systematic approach to
the parametric vibration problem, a canonical
form of Mathieu equations is first studied by
examining the Mathieu stability chart. Then,
the case of nonlinear quadratic damping being
added to the canonical Mathieu equation is
treated. An analytical solution of the nonlinear
Mathieu equation for unstable conditions is
obtained by using a perturbation method.
However the perturbation method is limited to
small magnitude of Mathieu parameters. In
order to solve for the case of large magnitude
parameters and to confirm analytical results,
the fourth-order Runge-Kutta method is used.

2. Theoretical Approach to
Mathieu Equation

In this paper, the following system of

nonlinear Mathieu equation is considered.

d)
31f2+(§~-2qcos 2t)f+¢ } Tz f =
(1)
where
0=(2Q0/w)? and ¢=(a/2) (20/@)?

¢ and ¢ in Equation(l) are called the
Mathieu parameters. The 2q/8(=a) in the
above equation can be considered to be the
strength of parametric excitation. Dynamic
systems involving hydrodynamic damping
forces, for examples, most marine structures
are described by this kind of nonlinear
Mathieu equation. Figure 2 shows a typical
model of marine structures, where the motions
of the surface platform and also the connected
vertical slender structure can be described by
this nonlinear Mathieu equation.

This nonlinear Mathieu equation poses an
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Fig. 2 Typical model of floating marine structures

interesting but complex problems. Before
analysing the nonlinear Mathieu Equation(l), a
cannonical form of the Mathieu equation is
first then

hydrodynamic damping effect is examined. By

studied and the nonlinear
excluding the nonlinear term in Equation(l), a
canonical form of the Mathieu equations can
be written as

g;fz+(o“24 cos 27 ) f =0 (2)

A particular characteristic of this Mathieu
equation is that it contains a periodically
varying coefficient as a special case of the Hill
equation. This means that the solutions of the
Mathieu equation can be stable or unstable
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Fig. 3 Response growth of parametric excitation in
unstable conditions
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Fig. 4 Mathieu stability
paramelters
(Shaded regions are unstable)

chart up to large

depending on the combination of value of &
and ¢. Figure 3 illustrates a response growth
of parametric vibrations in unstable

conditions. Therefore, one of the main
_approaches to the Mathieu equation is to
obtain a stability chart. The Mathieu stability
chart up to large parameters was obtained by
Patel and Park'? and shown in Figure 4.
The shaded regions in Figure 4 indicate
unstable conditions where the solutions of the
Mathieu equation become exponentially
growing as shown in Figure 3. When q
approaches to zero, there exist unstable
conditions, ie., 6 =1(Q=w/2}, 6 =4 (=),
8 =9(Q=3w/2), . If q takes larger values,
the unstable areas become wider.
In the design of a dynamic system

undergoing parametric vibration, it needs to

control its dynamic conditions to be away
from such unstable conditions.

However, if a nonlinear damping term is
included as in Equation(l), even unstable
solutions become limited in its amplitude. In
order to solve Mathieu type or nonlinear
equations, perturbation techniques have been
frequently used. There are several methods in
this technique such as the straightforward
expansion, the method of strained parameters,

Whittaker’s method, the method of multiple
scales and the method of averaging. Of these
techniques, only the last two methods are
applicable to the nonlinear Mathieu equation.
Although such perturbation methods are
confined to small parameters, they are very
useful in identifying the global pattern of
solutions. In this analysis, one of the averaging
methods, the Kryov-Bogolieubov-Mitropolsky
method is employed(Minorsky®®).

Assuming that the parameters d, ¢, and ¢ in
Equation(1) are small and introducing a small
parameter &, Equation(l) can be rewritten as

2
g£+('n2+el+eg cos 27)f

A
+E£‘d‘r ‘dr =0 (3)
where,

S =nt+ty, y=¢Y,
eq=—2qand ec=c (4)
According to the Krylov- Bogolieubov -

Mitropolsky method, the
Equation(3) can be given in the form,

solution of

f=a cos qH—é‘,il efula,d)+0(eN™),

p=nr+86 (5)

where f is a periodic function of ¢ with a
period 27, and a and ¢ are assumed to vary
with time according to
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H=$ @)+ 0N ) (6)
aé _

T —n+2 €"B,(a)+0(e M*D) (7

Differentiating Equation(5) with respect to ¢
and using Equations(6) and (7) yields

—Z——an sin ¢

& (Aycos ¢—a Bsin ¢+—gé) (8)

=—an® cos ¢—¢€ (—2nA, sin ¢

—2a »n Bicos $+3+ f ) (9)

In order to handle the nonlinear damping
term l ’ /A in Equation(3), the following

result is useful, that is, if

G=G+eG+e?G,+-- (10)

then

|Gl G= |G| G+2¢ |G| G+0(e?)
(1D

Thus,

ec ’FZ:—nZaZSQISin | sin ¢
(12)

Substituting Equations(8), (9) and (12) into
Equation(3) and collecting terms of first power
in ¢ yields

5 f2 + 1P h=2nA,sing +2anB,cos ¢

—y.acos$—a qcos2r cos ¢+ nac
|sin ¢! sin ¢ (13)

In Equation(13), # is an integer and is related
to the ordinal of an unstable regions is a
Mathieu stability chart. In this analysis, the
first region is only considered, that is, n=1.
Then Equation(13) becomes

df+f 2Asin ¢+2aBicosd— yacos

—a gcos2t cos d+a’c |sin $| sin ¢
(14)

In order to obtain the solution of the above
equation for £, further manipulations for the
third and fourth terms in Equation(14) are
necessary.

By using formulas of trigonometric
functions and the Fourier series, the above two
terms are respectively written in the following

form,

cos2t cosd =0,5(cos¢ + cos3d) cos28
+0,5(sind+sin3¢)sin26

(15)

| sing | sz'nzﬁ:élbmsinmd)
m=1,3,5" (16)
where, b,=— — 8 (17)

zm(m*—4)

Therefore, Equation(14) is rearranged as
follows

Z.{z th=sing (2A;+a*bc—0. 5agsin26)

+cos¢ (2aB, — ay —0, 5aqcos28) +
c0s3¢ (—0, 5agcos28) + sin3 (—

agqsin26 +a*ch;) + éjsbmsz'n me (18)

Removing the secular terms in Equation(18),
A, and B, are determined as follows :

A1 =0, 25agsin 26 ~0, 5a%b ¢ (19)
B, =0,5y +0. 25gcos26 (20)

Thus Equation(18) becomes in the form

d2
d‘rf2 th=-—

0.5aqcos28 cos3¢ — 0, 5agsin2
G sin3d+a*chsin3d+2= bnsin me
" (21)
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where,
m= 5' 7’ 9' ves

The particular solution of Equation(21)
takes in the following form

S =(aq/16) (cos26 cos3¢ +sin28 sin3¢ +

a’*g%: 1_{)”'m2sz’n me (22)
m=>5, 7‘ 9, -

Substituting Equation(22) into Equation(3) to
a first approximation and replacing these
parameters by the original ones in Equation(4)
yields

f=a cos(r+§)—("g§“){cos 20
cos 3(r+8)+sin 26 sin 3(r+8)}
g bm .
+a*cE — sinm(r+86)
m]l—m?

m=51719,: (23)

Now, ¢ and # are to be determined from
Equations(6) and (7), respectively, to a first
approximate such that

da/dtr=¢A, and d¢/dr=1+¢ B,

Substituting Equations(19) and (20) into the
above equation and using ¢ =17 + 6, yields

da/dr=—0.5 ag sin20—0.5 a*bc  (24)
dé/dr=0.5v—0.5q cos 26 (25)

In the nonlinear Mathieu Equation(l), the
unbounded solutions are limited by nonlinear
damping effects even though the system is in
an unstable condition. It is, therefore,
important to obtain steady-state periodic
solutions with stationary amplitude ¢ and
phase angle # . These are obtained by setting
da/dr =0 and dé/dr =0 in Equations(24) and
(25). The nontrivial solutions of Equations(24)
and (25) satisfies

—q sin 26 —abc=0 (26)
y—q cos 26 =0 (27)

from the above two
b=8/(3x)
Equation(17) and y =6 —1 from Equation(4)
gives

Eliminating 8

equations and using from

az%th(a—w (28)

From Equations(26) asnd (27), 8  also can
be given in the form

~ 1 ‘s _1)2
6 = _sin'— / 1- (9 21) (29)
2 q

The above result is related to the first
instability region of the Mathieu chart and
provides important information for the
nonlinear Mathieu equation with a quadratic
damping term. As can be seen from
Equation(28), the response amplitudes are
limited even if a system is in the instability
Substituting Equation(28)

Equation(23) gives a complete solution of

region. into

parametric vibrations of the model in the first
of the Mathieu One
important result is the steady-state response

instability chart.
amplitude, 4 which is plotted against 6 and ¢
in Figure 5. 4 has its maximum value at the
centre of the instability region, i. e,

_ 3= _
Gmax="g 45 for 6 =1 (30)

It can be seen that @max is proportional to
the magnitude of the parametric excitation, ¢
and inversely proportional to the damping
coefficient, c.

Equation(30) can be expressed in terms of
the natural frequency and excitation freuency

from equation(l).

_ 3rall? @
A max™= ica? for Q= 5 (31)
Equation(31) indicates that maximum
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Fig. 5 Stationary amplitude of the nonlinear
Mathieu equation in the first instability
region

response amplitude occurs when the excitation
frequency is twice as large as the natural
frequency. It should be noted that the ahove
result is applicable to the first instability
region only. However the general response
pattern in the higher instability region is the
same as the first one. In order to obtain the
steady-state solution analytically for higher
order instability regions, higher order
approximations are needed, which makes the

calculation complicated.

3. Numerical Results and Discussions

The nonlinear Mathieu equation with large
magnitude parameters cannot be solved
analytically. Therefore, it is necessary to
employ a numerical method. The previous
analytical results of parametric excitation for
small magnitude parameters also need to be
verified by a numerical method. Among
numerical methods for ordinary differential
equations, the fourth-order Runge-Kutta
method is widely used due to its stabilty and
accuracy. In this analysis the Runge-Kutta
method is employed to obtain the solution of
the nonlinear Mathieu Equation(l) with large
parameters.

The following initial conditions are used for
numerical solutions.

F(0)=0.1, df(0)/dr=0 (32)

Equation(l) is then solved numerically for
different values of parameters, & and q. To
begin with, the frequency response curve of
parametric vibrations is obtained as a function
of ¢ (=[2Q]%/w?) parameter. As can be seen
from the previous analytical result,
equation(30), the response also depends on the
value of damping coefficient, ¢. In Figure 6,
the frequency response curve is plotted for
The

strength of the parametric excitation, 2q/68 (=

four different damping coefficient.

@) is set to be 1.0 for Figure 6. With reference
to the Mathieu stability chart in Figure 4, the
following conclusions can be drawn from
Figure 6 ;
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Fig. 6 Response diagram of parametric excitation
for different damping coefficients

1) When the damping coefficient is zero, the
response amplitude becomes unlimited in
every instability region.

2) When the damping effect is considered,
even the response amplitude of unstable
solutions become limited.

3) The magnitude of limited response
amplitde becomes larger as the instability
region gets lower.

4) the response amplitude is the largest in the
centre of each instability region.

Time histories of parametric vibration are

(385)
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around the fourth and the lfth instability
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then obtained for typical dynamic conditions.
Some results are illustrated for slender marine
structures sudjected to parametric excitation.
The excitation period is taken to be 15
seconds. Figure7 illustrates the time histories
of the structures whose dynamic conditions
correspond to around the fourth and the fifth
instability regions of the Mathieu stability
chart. Some interesting results can be found by
comparing the response amplitude of Figure
7(a) with that of Figure 7(b). Even when the
excitation strength is increased, the response
amplitude gets smaller which is unexpected.
This is the characteristic of parametric
vibration as can easily be shown from the
stability shart of Figure 4. The reason is that
the condition of Figure 7(a) corresponds to the
centre of the fifth instability area. Meanwhile
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Fig. 8 Time histories of parametric vibration in the
second instability region

the conditions of Figure 7(b) are near the
stability region in the chart.

However, as can be seen in Figure 7(c), the
response amplitudes sharply increase with the
excitation strength due to the dynamic
condition appraching the fourth instability
region of the Mathieu chart. Further increase
in excitation strength (Figure 7(d)) results in
the decrease of the response amplitude again
because of the dynamic condition approaching
stable regions. In addition, the response
frequency also depends on the strength of
2¢g/6 (=a). The
oscillation in Figure 7(b) exhibits chaotic

parametric excitation,

motion but those in Figure 7(a), (¢) and (d)
show perioddoubling phenomena for
excitation period of 15 seconds.

Figure 8 shows results for the structures
whose dynamic conditions correspond to the
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second instability region of the Mathieu chart.
The trend of amplitude variation with the
increase of excitation strength is the same as
that for the above mentioned instability
region. Even though the excitation strength is
increased, the corresponding response
amplitudes can be smaller due to the dynamic
conditions. The respose frequency is the same
as that of excitation frequency regardless of
the excitation strength. One of the notable
results of the above parametric excitation is
that the response frequency of parametric
excitation depends on its dynamic conditions.
The response frequency of parametric
excitation can be period multiplications or
chaotic according to the dynamic conditions.

However, approximately speaking, the
response frequency of parametric excitation is
half of the excitation frequency in the first
instability region, equal in the second region
and double in the fourth regions and so on.
Therefore, in the parametric excitation case,
the following frequency relationship can be
obtained between the response frequency(w,)

and the excitation frequency(w)
(@) =(n/2) w

where n denotes the instability region number.
These aspects are contrary to the forced
vibration case where the response frequency is
usually identical to the excitation freuency in
this kind of nonlinear system.

4. Conclusions

This work has been carried out to
investigate the parametrically excited
vibrations of a system with a nonlinear
hydrodynamic damping term. To begin with,
the Mathieu problem was described by
examining Mathieu stability chart. The

response characteristics of the parametric
excitation are obtained for the first instability
region by analytcally solving the nonlinear
Mathieu equation. For higher-order instability
regions, the fourth-order Runge-Kutta method
is used to obtain the frequency response curve.
From these the following properties for
parametric vibrations with a nonlinear
hydrodynamic damping term can be drawn

(1) Even though dynamic conditions fall
under unstable regions, the responses are
limited dynamically stable due to the
hydrodynamic damping force.

(2} The limited response amplitudes are the
largest at the centre of each instability region
and come to zero in stable areas or boundary
lines between unstable regions.

(3) The response amplitudes of parametric
excitation rely on its strength, 2¢/¢ and the
hydrodynamic damping force.

(4) The response frequency of parametric
excitation is half of the excitation frequency
in the first instability region, equal in the
second region and becomes multiple in the
higher instability regions. In some cases, there
also exists chaotic metion.
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